Патент на изобретение №2339939

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2339939 (13) C1
(51) МПК

G01N30/06 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.10.2010 – действует

(21), (22) Заявка: 2007111624/28, 29.03.2007

(24) Дата начала отсчета срока действия патента:

29.03.2007

(46) Опубликовано: 27.11.2008

(56) Список документов, цитированных в отчете о
поиске:
SU 654548 A, 28.02.1979. SU 1807016 A1, 07.04.1993. SU 1474545 A1, 23.04.1989. SU 857854 A, 23.08.1981. JP 6273340 A, 30.09.1994. US 5589068 A, 31.12.1996. US 5821765 A, 13.10.1998.

Адрес для переписки:

450098, г.Уфа, ул. Российская, 157/2, МУП “Уфаводоканал”

(72) Автор(ы):

Гордиенко Вячеслав Семенович (RU),
Кантор Лев Исаакович (RU),
Цыпышева Ляля Газизовна (RU),
Вождаева Маргарита Юрьевна (RU),
Кантор Евгений Абрамович (RU),
Мельницкий Игорь Александрович (RU),
Труханова Наталья Владимировна (RU)

(73) Патентообладатель(и):

МУП “Уфаводоканал” (RU)

(54) СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ОЧИСТКИ ВОДЫ ПРИ ВОДОПОДГОТОВКЕ ОТ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ ОГРАНИЧЕННОЙ ЛЕТУЧЕСТИ

(57) Реферат:

Изобретение относится к области экологии и аналитической химии, а также к области водоподготовки и может быть использовано для оценки эффективности очистки воды разного происхождения на водозаборах с различными этапами технологической обработки, для оценки эффективности работы фильтров и устройств очистки воды бытового и промышленного назначения. Сущность способа заключается в использовании обобщенного показателя суммарного содержания углерода (ТОУ) в органических соединениях ограниченной летучести до и после очистки. Суммарное содержание углерода определяется методом газовой хроматографии с атомно-эмиссионным детектированием. Изобретено определение эффективности очистки методом с высокой чувствительностью, при этом показатель ТОУ корректно отражает изменения качества воды в ходе водоподготовки. 5 табл.

Изобретение относится к области экологии и аналитической химии, а также к области водоподготовки, в частности к способу определения эффективности очистки воды, который может быть применен на сооружениях водоподготовки с различными этапами технологической обработки, использующих речную воду, воду из скважин и другие типы вод, а также для оценки эффективности работы фильтров и устройств очистки воды бытового и промышленного назначения.

Эффективность очистки воды при водоподготовке в целом и на отдельных ее этапах оценивается по содержанию контролируемых веществ в воде до и после изучаемой стадии очистки. При очистке воды применяются традиционные стадии реагентной обработки, процессы осветления (фильтрование, коагуляция), окисления (ультрафиолетовое обеззараживание, хлорирование, озонирование), сорбционные процессы (обработка порошкообразным активированным углем и др.), мембранные методы. Оценка эффективности каждой из стадий водоподготовки необходима для выбора наиболее оптимального метода очистки воды от загрязнителей, в данном случае от ограниченно-летучих органических соединений (ОЛОС). В число последних входит основная часть продукции нефтехимических и химических производств, пестициды, продукты окислительной деструкции природных высокомолекулярных органических соединений, продукты жизнедеятельности водорослей и метаболиты перечисленных групп соединений. Контроль всех нормируемых в воде соединений для решения задачи подбора оптимальных условий водоподготовки трудоемок, так как требует большого количества аттестованных методик и разнообразного приборного парка. С другой стороны, такой подход оценки эффективности технологий водоподготовки нецелесообразен, поскольку никогда не будет достаточно информативен, и перечень обязательных для контроля загрязнителей никогда не сможет охватить все соединения, присутствующие в воде и сказывающиеся на ее итоговом качестве. Набор и состав таких соединений часто изменчив и зависит от многих факторов, в том числе климатических и сезонных условий, близости промышленных объектов, состава органических соединений природного происхождения в исходной воде, обуславливающих формирование разнообразных классов побочных продуктов при реагентной обработке (например, образование бром-, хлор-, кислородсодержащих органических соединений при хлорировании воды в результате деструкции природных гуминовых и фульвокислот). В такой ситуации для выбора эффективной технологии водоподготовки более логичным оказывается подход, основанный на оценке общего количества органических примесей воды до и после стадии очистки.

Широко распространенными обобщенными показателями качества воды являются химическое потребление кислорода (ХПК), перманганатная окисляемость (ПО), содержание общего органического углерода (ООУ или Total Organic Carbon – ТОС).

Известен способ определения ХПК (Международный стандарт ИСО 6060 «Метод определения ХПК воды»). Он основан на окислении органических соединений бихроматом калия при повышенной температуре в кислой среде. Чувствительность метода составляет 4 мгО/дм3.

Известен способ определения ПО (Международный стандарт ИСО 8467 «Метод определения перманганатного индекса воды»), который основан на окислении компонентов пробы перманганатом калия при кипячении в кислой среде. Чувствительность метода составляет 0,25 мгО/дм3.

Известны способы определения общего органического углерода, основанные на окислении углерода в органических компонентах воды ультрафиолетовым облучением в присутствии персульфата калия (ООУ) с дальнейшим фотометрическим определением или на термокаталитическом окислении до двуокиси углерода (ТОС), концентрация которого оценивается методом хроматографии после перевода двуокиси углерода в метан (Международный стандарт ИСО 8245 «Руководство по определению общего органического углерода»). Предел чувствительности метода – 1 мг/дм3.

Перечисленные обобщенные показатели оценивают суммарное содержание органических веществ в воде, включая природные и техногенные примеси, а некоторые из них включают оценку содержания и неорганических веществ. В то же время доля природных органических соединений (гуминовых веществ) многократно превышает долю техногенных примесей. Поэтому с помощью показателей ХПК, ПО, ООУ (ТОС) можно оценивать эффективность очистки воды в основном от природных соединений. Более того, содержание природных органических веществ может уменьшаться в процессе водоподготовки за счет образования при обеззараживании токсичных хлор-, бром- или кислородсодержащих соединений, которые, являясь летучими и ограниченно-летучими соединениями, будут иметь меньшую молекулярную массу, более низкие температуры кипения и иную окисляемость. Таким образом, перечисленные обобщенные показатели позволяют учитывать убыль лишь природных органических соединений в процессе водоподготовки, не отражают изменения загрязненности воды ОЛОС, присутствовавших в воде до и образовавшихся в ходе водоподготовки ввиду невысокой чувствительности методов их определения, и поэтому могут некорректно оценить эффективность изучаемой технологии в целом.

Оценить эффективность очистки воды при водоподготовке от ОЛОС, основную массу которых составляют техногенные органические примеси (пестициды, ароматические и алифатические углеводороды, жирные кислоты, эфиры, фенолы, полиароматические углеводороды и другие экотоксиканты и их производные), обладающие высокой токсичностью и имеющие низкие значения предельно допустимых концентраций (ПДК) в воде, позволяют хроматографические методы с различными видами детектирования. Однако в этом случае оценка содержания всех индивидуальных ограниченно-летучих органических соединений в воде до и после водоподготовки требует большого количества методик, специфических детектирующих устройств, наличия стандартов каждого из определяемых компонентов пробы и является крайне трудоемкой.

Таким образом, в литературе не описан способ оценки эффективности очистки воды при водоподготовке от ОЛОС с использованием каких-либо обобщенных показателей.

Предлагаемый способ отличается тем, что позволяет количественно оценить общую загрязненность воды ОЛОС до и после очистки по суммарному содержанию углерода в них с помощью метода газовой хроматографии с атомно-эмиссионным детектированием (ГХ-АЭД).

-5 мг/дм3, что на несколько порядков выше чувствительности определения других известных обобщенных показателей. Поскольку основную часть ОЛОС составляют соединения техногенной природы, используемый обобщенный показатель суммарного содержания углерода в них назван техногенным органическим углеродом (ТОУ).

Определение ТОУ осуществляется следующим образом.

Из пробы воды определенного объема до стадии очистки и пробы воды этого же объема после стадии очистки проводят экстрактивное извлечение органических примесей. Экстракт упаривают до необходимой степени концентрирования и анализируют методом ГХ-АЭД на линии эмиссии углерода. Измеряют суммарную площадь всех пиков на элемент селективной хроматограмме углерода и рассчитывают концентрацию ТОУ методом внешнего стандарта.

Отличительным признаком способа является отсутствие необходимости четкого хроматографического разделения компонентов, их идентификации и наличия стандартных образцов всех определяемых компонентов. При этом количественная оценка ТОУ проводится с чувствительностью, многократно превышающей чувствительность определения традиционных обобщенных показателей, и адекватно реагирует на незначительное загрязнение воды органическими соединениями техногенного происхождения.

Пример 1.

В речную воду (р.Уфа) добавили ряд техногенных соединений, которые отсутствовали в исходной воде – пестициды, хлорфенолы и углеводороды дизельной фракции нефти. Пробы с добавками экстрагировали хлористым метиленом, экстракт упаривали до степени концентрирования 1:10000 и анализировали методом ГХ-АЭД на линии эмиссии углерода 193 нм при программировании температуры термостата колонки от 35 до 60°С со скоростью 20 град/мин и далее до 280°С со скоростью 6 град/мин. В табл.1 приведены расчетные данные по содержанию углерода в воде при данном искусственном загрязнении. Результаты анализа воды до и после загрязнения за вычетом доли используемых растворителей приведены в табл.2. Концентрации вводимых веществ относительно их предельно допустимых концентраций (ПДК) были значительными, но не сказались на величинах ХПК, ПО и ООУ, а значение показателя ТОУ было близким суммарному содержанию углерода в добавленных компонентах. Таким образом, с использованием показателя ТОУ оказалось возможным оценить загрязненность воды техногенными примесями.

Пример 2.

По процедуре пробоподготовки и анализа, описанных в примере 1, проведено исследование воды реки Уфа до и после искусственного загрязнения нефтепродуктами (н/п) и после дальнейшей очистки этой воды с применением реагентной обработки и сорбции на активированном угле. Опытно-промышленная установка включала в себя блок для ввода модельного раствора искусственных загрязнителей в воду (в данной работе – нефтепродуктов), блок смешения реагентов (сульфата алюминия и полиакриламида), блок осветления воды и блок фильтрования, включающий фильтрационную колонну, загруженную фракционированной мелкозернистой горелой породой. Загрязненная вода с введенным в нее порошкообразным активированным углем подавалась в блок смешения с реагентами и далее на осветление и фильтрование. Результаты определения общей загрязненности воды до и после очистки с помощью показателя ТОУ приведены в таблице 3.

Таблица 3
Значения показателя ТОУ до и после искусственного загрязнения пробы воды н/п и ее очистки
Показатель Концентрация в пробе, мг/дм3
№1a №2б №3в
ТОУ 0,0043 0,042 0,0084
а – исходный образец пробы воды р.Уфа;
б – образец пробы воды р.Уфа, загрязненной н/п;
в – образец пробы воды р.Уфа, загрязненной н/п и прошедшей стадии очистки

Степень очистки воды достигла 80% по показателю ТОУ. Наличие нефтепродуктов в пробах другими методами не фиксировалось, в частности ИК-спектрометрическим методом (ГОСТ Р 51797-2001 «Метод определения содержания нефтепродуктов», минимально определяемая концентрация нефтепродуктов – 0,05 мг/дм3).

Пример 3.

По процедуре пробоподготовки и анализа, описанных в примере 1, проведено исследование воды реки Уфа до и после ее искусственного загрязнения нефтепродуктами, очистки и обработки хлорной водой. Концентрация добавки (дизельная фракция нефти) составляла 0,26 мг/дм3 (2,6 ПДК по нефтепродуктам). Очистка загрязненной воды осуществлялась путем введения в нее порошкообразного активированного угля с последующей реагентной обработкой, осветлением и фильтрованием через мелкозернистую горелую породу. На следующем этапе осуществлялось дозирование хлорной воды. Результаты определения общей загрязненности воды до и после перечисленных этапов обработки с помощью показателя ТОУ приведены в таблице 4.

Таблица 4
Значения обобщенных показателей до и после загрязнения пробы воды н/п и ее очистки
Показатели Концентрация в пробе, мг/дм3
№1a №2б №3в №4г
1 ТОС 6,55 6,63 6,08 5,24
2 ООУ 3,6 3,2 2,9 2,4
3 ПО, мгО/дм3 3,4 3,1 1,9 1,5
4 Нефтепродукты* <0,05 0,191 <0,05 <0,05
5 ТОУ 0,0107 0,231 0,0069 0,0127
* – показатель суммарного содержания н/п, определяемое ИК-спектрометрическим методом (ГОСТ Р 51797-2001 «Метод определения содержания нефтепродуктов», минимально определяемая концентрация нефтепродуктов – 0,05 мг/дм3)
а – исходный образец пробы воды р.Уфа;
б – образец пробы воды р.Уфа, загрязненной н/п;
в – образец пробы воды р.Уфа, загрязненной н/п и прошедшей стадии очистки (введение порошкообразного активированного угля, реагентная обработка, осветление и фильтрование);
г – образец пробы воды р.Уфа, загрязненной н/п, прошедшей стадии очистки и хлорирования

Эффективность очистки воды с применением описанной технологии водоподготовки в данном эксперименте по показателю ТОУ составила 97%.

Проведение хлорирования увеличило общее содержание углерода в органических соединениях ограниченной летучести согласно показателю ТОУ в два раза. Последнее указывает на протекание окислительной деструкции природных высокомолекулярных органических соединений (ВМС) до соединений с меньшей молекулярной массой, что сказывается на качестве воды.

Использование таких обобщенных показателей, как ТОС, ООУ, ПО, в приведенном примере неинформативно из-за значительного содержания природных ВМС в воде, что не позволяет дифференцированно оценить наличие н/п в составе загрязнителей и оценить влияние водоподготовки. Применение ИК-спектрометрического метода в анализе также недостаточно информативно, поскольку не дает возможность оценить степень очистки воды от нефтепродуктов из-за низкой чувствительности метода. При определении ТОУ, ВМС не извлекаются хлористым метиленом из воды и не хроматографируются при данных условиях анализа.

Таким образом, показатель ТОУ позволяет оценивать как эффективность очистки воды от техногенных примесей на разных стадиях водоподготовки, так и изменение качества воды в целом.

Пример 4.

В таблице 5 представлены данные по оценке эффективности очистки воды при использовании бытового фильтра, установки деионизации воды и дистилляции.

Эффективность очистки воды с использованием бытового фильтра, где в качестве сорбента использовались активированные угли, по показателю ТОУ достигает 90%.

Эффективность очистки воды с помощью деионизирующей установки, куда подавалась вода с изначально низким содержанием органических веществ, составила 65% по показателю ООУ. В то же время по показателю ТОУ наблюдалась обратная картина – качество воды после установки было хуже, чем до нее (табл.5). Полученные данные указывают на достаточно высокую эффективность мембранных фильтров установки по отношению к ВМС и на возможность накопления ОЛОС на фильтровальных эелементах установки, что приводит к постепенной десорбции этих соединений в подготавливаемую воду.

Оценка эффективности очистки воды от органических соединений при использовании дистилляции показала, что степень очистки от ВМС составила около 60%. Относительно содержания ОЛОС, как и в случае деионизирующей установки, наблюдается ухудшение качества воды (табл.5).

Таким образом, предложенный обобщенный показатель ТОУ является чувствительным и информативным для экспрессной оценки эффективности очистки воды от органических соединений ограниченной летучести при водоподготовке на сооружениях с различными этапами технологической обработки воды при использовании фильтров и устройств очистки воды бытового назначения.

Таблица 1
Содержание загрязнителей в анализируемых образцах
Вводимые загрязнители Концентрация в воде, мг/дм3
Опыт 1 Опыт 2 Опыт 3 Опыт 4
Вещества Углерода Вещества Углерода Вещества Углерода Вещества Углерода
Гексахлорбензол 0,0005 0,00013
-ГХЦГ 0,001 0,00025
-ГХЦГ 0,001 0,00025
-ГХЦГ 0,002 0,00049 0,001 0,00025
Метафос 0,002 0,00073 0,001 0,00036
ДДЕ 0,001 0,00053
ДДТ 0,001 0,000486 0,002 0,00097
Каратэ 0,004 0,0024 0,003 0,0018
Амбуш 0,007 0,0045 0,01 0,0064
Децис 0,006 0,00313 0,003 0,0016
Симазин 0,002 0,00083 0,001 0,00042
Атразин 0,002 0,00089 0,001 0,00045
Бенз(а)пирен 0,00005 0,00005
2,4-Дихлорфенол 0,002 0,00088 0,0012 0,00053 0,01 0,0044
2,4,6-Трихлорфенол 0,002 0,00073 0,002 0,00073
Пентахлорфенол 0,01 0,0027
Смесь н.п. С1127 0,03 0,025
Итого 0,01511 0,01737 0,025 0,0044

Таблица 2
Изменение обобщенных показателей качества воды при искусственном загрязнении
Введено Обобщенные показатели
Вещество Сввед 3, мг/дм3 ПО мгО/дм3 ХПК мгО/дм3 ООУ мг/дм3 ТОУ (АЭД)
Снайд 4, мг/дм3 С5, мг/дм3
Исходная вода 1,8 8,1 2,50 0,0205
Пестициды 1 0,0151 1,7 8,0 2,48 0,0329 0,0124
Пестициды и фенолы2 0,0173 1,9 8,2 2,52 0,0356 0,0151
Н.п. С1127 0,0250 1,8 7,9 2,40 0,0372 0,0167
Фенолы 0,0044 1,9 8,1 2,49 0,0255 0,0050
1 – 12 компонентов с концентрацией 0,5-4 ПДК;
2 – 14 компонентов с концентрацией 0,5-3 ПДК;
3 Сввед – концентрация веществ в пересчете на углерод, добавленная в исходную воду;
4 Снайд – концентрация углерода, найденная в исходной воде и в пробах после добавки веществ;
5 С – разница между Снайд в пробах с добавкой и Снайд в исходной воде; (величина С должна соответствовать Сввед)

Таблица 5
Содержание ТОУ в воде после различных видов обработки
Образцы воды ТОУ, мг/дм3 ООУ, мг/дм3
Вода до бытового фильтра 0,0058
Вода после бытового фильтра 0,0006
Вода до установки деионизации воды 0,0098 1,7
Вода после установки деионизации воды 0,016 0,6
Вода, подаваемая в дистиллятор 0,0012 1,7
Вода после дистиллятора 0,058 0,7

Формула изобретения

Способ определения эффективности очистки воды при водоподготовке от органических загрязнителей ограниченной летучести путем газовой хроматографии с атомно-эмиссионным детектированием, отличающийся тем, что эффективность очистки воды определяют по общему количеству ограниченно-летучих органических соединений (ОЛОС) в воде до и после очистки, которое оценивают по суммарному содержанию в них углерода.


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 30.03.2009

Извещение опубликовано: 27.05.2010 БИ: 15/2010


NF4A – Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 20.06.2010

Извещение опубликовано: 20.06.2010 БИ: 17/2010


Categories: BD_2339000-2339999