Патент на изобретение №2339105

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2339105 (13) C2
(51) МПК

H01F1/34 (2006.01)
C04B35/26 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.10.2010 – действует

(21), (22) Заявка: 2006141415/02, 24.11.2006

(24) Дата начала отсчета срока действия патента:

24.11.2006

(43) Дата публикации заявки: 20.06.2008

(46) Опубликовано: 20.11.2008

(56) Список документов, цитированных в отчете о
поиске:
RU 2009561 С1, 15.03.1994. SU 9459112 А, 23.07.1982. RU 2247436 С2, 27.02.2005. JP 54-159696 А, 17.12.1979. FR 2537456 А, 15.06.1984. JP 01-198003 A, 09.08.1989. JP 02-256729 A, 09.11.1987.

Адрес для переписки:

125190, Москва, Ленинградский пр-кт, 80, корп.16, ОАО “ГСКБ “Алмаз-Антей”, начальнику отдела по патентно-лицензионной работе

(72) Автор(ы):

Афанасьев Юрий Николаевич (RU),
Кашин Валерий Акимович (RU),
Новиков Александр Валерьевич (RU)

(73) Патентообладатель(и):

Открытое акционерное общество “Головное системное конструкторское бюро Концерна ПВО “Алмаз-Антей” имени академика А.А.Расплетина” (ОАО “ГСКБ “Алмаз-Антей”) (RU)

(54) ФЕРРИТОВЫЙ МАТЕРИАЛ

(57) Реферат:

Изобретение относится к ферритовым материалам, предназначенным для использования в сверхвысокочастотных волноводно-стержневых антенных элементах фазированных антенных решеток. Ферритовый материал содержит, мас.%: оксид железа 31,32-31,74; карбонат лития 16,19-16,35; оксид титана 35,61-36,39; оксид цинка 6,17-6,19; карбонат марганца 2,90-2,92; оксид висмута 0,39-0,41; оксид алюминия 6,45-6,97. У материала отсутствует намагниченность и магнитные потери в интервале рабочих температур -50-60°С. 1 табл.

Изобретение относится к ферритовым материалам, предназначенным для использования в сверхвысокочастотных (СВЧ) волноводно-стержневых антенных элементах фазированных антенных решеток.

Известно, что с увеличением температуры намагниченность ферритовых материалов уменьшается и при достижении температурой определенного значения – точки Кюри – исчезает, а феррит становится парамагнетиком. В зависимости от состава точка Кюри для различных ферритовых материалов имеет различное значение [1]. Для получения высокой и постоянной по величине намагниченности в рабочем интервале температур составы ферритовых материалов подбирают так, чтобы температура точки Кюри была как можно выше. В ферритовых материалах потери в области СВЧ складываются из диэлектрических и магнитных потерь, причем основными являются магнитные потери, связанные с намагниченностью материала. Для уменьшения магнитных потерь температура точки Кюри должна быть как можно ниже, а в пределе – ферромагнитный материал в интервале рабочих температур выше -50°С должен работать в парамагнитной области. Тогда намагниченность феррита равна нулю, магнитная проницаемость равна единице и соответственно отсутствуют магнитные потери. Известен ферритовый материал литий-титановой системы Li1,2 Fe0,4 Ti1,40 О4, содержащий, мас.%:

Li2CO3 33,53
Fe2О3 24,16
TiO2 42,31.

У этого материала температура точки Кюри равна -148°С (125 К) и, следовательно, при более высоких температурах он парамагнитен [2]. Однако вследствие большого количества титана этот материал имеет значительную величину диэлектрической проницаемости, порядка =20, и заметные диэлектрические потери, связанные с двухвалентными ионами железа, что ограничивает его практическое использование.

Известен ферритовый материал, содержащий, мол. доли:

Li2O 0,395-0,475
TiO2 0,005-0,15
ZnO 0,20-0,21
MnO2 0,1-0,3
Nb2O5 0,20-0,035
Fe2O3 2,175-2,395.

Данный ферритовый материал имеет небольшие магнитные и диэлектрические потери в миллиметровом диапазоне длин волн при высоком значении намагниченности насыщения [3]. Однако из-за очень высокой намагниченности общий уровень потерь у него велик.

Известна шихта для получения ферритового материала, содержащая, мас.%:

Fe2O3 19,19-37,42 Li2CO3 2,91-3,09
ZnO 8,21-8,72 MnCO3 12,13-12,88
TiO2 0,17-21,42 Fe 18,92-34,45.
Bi2O3 0,24-0,25

Эта шихта позволяет получить ферритовый материал с величиной резонансных потерь 0,30 дБ и ниже [4]. Однако недостатками такого ферритового материала являются его большие намагниченность и магнитные потери.

Наиболее близким к заявленному изобретению является ферритовый материал марки 3СЧ-18, содержащий, мас.%:

Fe2O3 59,59
Li2CO3 11,2
TiO2 18,65
ZnO 7,6
MnCO3 2,74
Bi2O3 0,22.

Этот ферритовый материал, взятый в качестве прототипа, имеет диэлектрическую проницаемость =16-17, малые диэлектрические потери: tg<5·10-4 [5].

Причиной, препятствующей достижению указанного ниже технического результата при использовании известного ферритового материала (прототипа), являются большие величины его намагниченности, температуры Кюри и соответственно значительные магнитные потери в интервале рабочих температур.

Сущность изобретения заключается в следующем. Его задачей является разработка и создание ферритового материала с малыми диэлектрическими потерями, обладающего свойствами парамагнетика в интервале рабочих температур -50-60°С, а также плотностью, обеспечивающей высокую механическую прочность и низкое влагопоглощение. Технический результат, получаемый при осуществлении изобретения, выражается в отсутствии намагниченности ферритового материала и соответственно магнитных потерь в интервале рабочих температур.

Указанный технический результат достигается тем, что в известный ферритовый материал, полученный из смеси порошков, содержащей Fe2О3, Li2CO3, TiO2, ZnO, MnCO3, Bi2О3, введен оксид алюминия Al2O3 при следующем соотношении компонентов, мас.%:

оксид железа 31,32-31,74
карбонат лития 16,19-16,35
оксид титана 35,61-36,39
оксид цинка 6,17-6,19
карбонат марганца 2,90-2,92
оксид висмута 0,39-0,41
оксид алюминия 6,45-6,97.

Замещение железа титаном позволяет уменьшить намагниченность феррита, но при этом одновременно увеличивается диэлектрическая проницаемость. В принципе, увеличением количества титана можно добиться нулевой намагниченности, однако при этом диэлектрическая проницаемость будет порядка =20. Поэтому в заявленном ферритовом материале количество титана ограничено величиной диэлектрической проницаемости =16-17, а дальнейшее уменьшение намагниченности осуществлено путем введения оксида алюминия, который на диэлектрическую проницаемость не влияет. Уменьшение содержания оксида железа существенно снижает обменное взаимодействие и тем самым уменьшает температуру Кюри. Заявленный ферритовый материал, которому заявитель дал наименование «Феррит ЛИ-89», получают по обычной керамической технологии. В качестве исходных компонентов берут следующие порошки: оксид железа – ГОСТ 4173-83, карбонат лития – ТУ 6-09-3728-83, оксид титана – ТУ 6-09-3811-79, оксид цинка – ГОСТ 10262-73, карбонат марганца ТУ 6-09-5131-83, оксид висмута – ТУ 6-09-02-298-90, оксид алюминия – ТУ 6-09-426-75. Указанные компоненты смешивают в соотношениях по формуле изобретения, ферритизируют при температуре 1070±20°С в течение 4-6 ч, затем размалывают, проводят гидропрессование и спекают образцы при температуре 1050±20°С в течение 6-10 ч. Скорость нагрева и охлаждения составляет 200°С/ч.

Примеры осуществления изобретения представлены в таблице. Из приведенных данных видно, что по сравнению с прототипом заявленный ферритовый материал имеет общие потери в три раза меньшие, т.к. отсутствуют магнитные потери, а температура точки Кюри равна -100°С, что обеспечивает парамагнитное состояние ферритового материала в интервале рабочих температур -50-60°С. Кроме того, у него на порядок ниже влагопоглощение. Благодаря таким свойствам, простоте получения и низкой стоимости заявленный ферритовый материал может быть использован в волноводно-стержневых антенных элементах вместо дорогостоящих ситаллов.

Источники информации

1. Л.И.Рабкин, С.А.Соскин, Б.Ш.Эпштейн. Технология ферритов. М., Госэнергоиздат, 1962, стр.47.

2. Кристаллохимия феррошпинелей. Бляссе Ж. Перевод с англ. Под ред. Б.Е.Левина. М., «Металлургия», 1968, стр.134.

3. RU 2247436, Н01F 1/34, 2005.

4. RU 2009561, Н01F 1/34, 1994.

5. Каталог «Сверхвысокочастотные магнитные и диэлектрические материалы». СПб., ОАО «Завод «Магнетон», 2001.

Формула изобретения

Ферритовый материал, содержащий оксид железа, карбонат лития, оксид титана, оксид цинка, карбонат марганца и оксид висмута, отличающийся тем, что он дополнительно содержит оксид алюминия при следующем соотношении компонентов, мас.%:

оксид железа 31,32-31,74
карбонат лития 16,19-16,35
оксид титана 35,61-36,39
оксид цинка 6,17-6,19
карбонат марганца 2,90-2,92
оксид висмута 0,39-0,41
оксид алюминия 6,45-6,97.

Categories: BD_2339000-2339999