Патент на изобретение №2339105
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ФЕРРИТОВЫЙ МАТЕРИАЛ
(57) Реферат:
Изобретение относится к ферритовым материалам, предназначенным для использования в сверхвысокочастотных волноводно-стержневых антенных элементах фазированных антенных решеток. Ферритовый материал содержит, мас.%: оксид железа 31,32-31,74; карбонат лития 16,19-16,35; оксид титана 35,61-36,39; оксид цинка 6,17-6,19; карбонат марганца 2,90-2,92; оксид висмута 0,39-0,41; оксид алюминия 6,45-6,97. У материала отсутствует намагниченность и магнитные потери в интервале рабочих температур -50-60°С. 1 табл.
Изобретение относится к ферритовым материалам, предназначенным для использования в сверхвысокочастотных (СВЧ) волноводно-стержневых антенных элементах фазированных антенных решеток. Известно, что с увеличением температуры намагниченность ферритовых материалов уменьшается и при достижении температурой определенного значения – точки Кюри – исчезает, а феррит становится парамагнетиком. В зависимости от состава точка Кюри для различных ферритовых материалов имеет различное значение [1]. Для получения высокой и постоянной по величине намагниченности в рабочем интервале температур составы ферритовых материалов подбирают так, чтобы температура точки Кюри была как можно выше. В ферритовых материалах потери в области СВЧ складываются из диэлектрических и магнитных потерь, причем основными являются магнитные потери, связанные с намагниченностью материала. Для уменьшения магнитных потерь температура точки Кюри должна быть как можно ниже, а в пределе – ферромагнитный материал в интервале рабочих температур выше -50°С должен работать в парамагнитной области. Тогда намагниченность феррита равна нулю, магнитная проницаемость равна единице и соответственно отсутствуют магнитные потери. Известен ферритовый материал литий-титановой системы Li1,2 Fe0,4 Ti1,40 О4, содержащий, мас.%:
У этого материала температура точки Кюри равна -148°С (125 К) и, следовательно, при более высоких температурах он парамагнитен [2]. Однако вследствие большого количества титана этот материал имеет значительную величину диэлектрической проницаемости, порядка Известен ферритовый материал, содержащий, мол. доли:
Данный ферритовый материал имеет небольшие магнитные и диэлектрические потери в миллиметровом диапазоне длин волн при высоком значении намагниченности насыщения [3]. Однако из-за очень высокой намагниченности общий уровень потерь у него велик. Известна шихта для получения ферритового материала, содержащая, мас.%:
Эта шихта позволяет получить ферритовый материал с величиной резонансных потерь 0,30 дБ и ниже [4]. Однако недостатками такого ферритового материала являются его большие намагниченность и магнитные потери. Наиболее близким к заявленному изобретению является ферритовый материал марки 3СЧ-18, содержащий, мас.%:
Этот ферритовый материал, взятый в качестве прототипа, имеет диэлектрическую проницаемость Причиной, препятствующей достижению указанного ниже технического результата при использовании известного ферритового материала (прототипа), являются большие величины его намагниченности, температуры Кюри и соответственно значительные магнитные потери в интервале рабочих температур. Сущность изобретения заключается в следующем. Его задачей является разработка и создание ферритового материала с малыми диэлектрическими потерями, обладающего свойствами парамагнетика в интервале рабочих температур -50-60°С, а также плотностью, обеспечивающей высокую механическую прочность и низкое влагопоглощение. Технический результат, получаемый при осуществлении изобретения, выражается в отсутствии намагниченности ферритового материала и соответственно магнитных потерь в интервале рабочих температур. Указанный технический результат достигается тем, что в известный ферритовый материал, полученный из смеси порошков, содержащей Fe2О3, Li2CO3, TiO2, ZnO, MnCO3, Bi2О3, введен оксид алюминия Al2O3 при следующем соотношении компонентов, мас.%:
Замещение железа титаном позволяет уменьшить намагниченность феррита, но при этом одновременно увеличивается диэлектрическая проницаемость. В принципе, увеличением количества титана можно добиться нулевой намагниченности, однако при этом диэлектрическая проницаемость будет порядка Примеры осуществления изобретения представлены в таблице. Из приведенных данных видно, что по сравнению с прототипом заявленный ферритовый материал имеет общие потери в три раза меньшие, т.к. отсутствуют магнитные потери, а температура точки Кюри равна -100°С, что обеспечивает парамагнитное состояние ферритового материала в интервале рабочих температур -50-60°С. Кроме того, у него на порядок ниже влагопоглощение. Благодаря таким свойствам, простоте получения и низкой стоимости заявленный ферритовый материал может быть использован в волноводно-стержневых антенных элементах вместо дорогостоящих ситаллов. Источники информации 1. Л.И.Рабкин, С.А.Соскин, Б.Ш.Эпштейн. Технология ферритов. М., Госэнергоиздат, 1962, стр.47. 2. Кристаллохимия феррошпинелей. Бляссе Ж. Перевод с англ. Под ред. Б.Е.Левина. М., «Металлургия», 1968, стр.134. 3. RU 2247436, Н01F 1/34, 2005. 4. RU 2009561, Н01F 1/34, 1994. 5. Каталог «Сверхвысокочастотные магнитные и диэлектрические материалы». СПб., ОАО «Завод «Магнетон», 2001.
Формула изобретения
Ферритовый материал, содержащий оксид железа, карбонат лития, оксид титана, оксид цинка, карбонат марганца и оксид висмута, отличающийся тем, что он дополнительно содержит оксид алюминия при следующем соотношении компонентов, мас.%:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||