Патент на изобретение №2339018
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА МЕТАЛЛА ДЛИТЕЛЬНО ЭКСПЛУАТИРУЕМЫХ СТАЛЬНЫХ ТРУБ
(57) Реферат:
Изобретение относится к испытательной технике. Сущность изобретения: вырезают заготовки из участка трубы с наибольшим значением коэрцитивной силы. Деформируют и искусственно их старят. Измеряют коэрцитивную силу. Изготавливают и проводят испытания образцов, аппроксимируют зависимость изменения параметров механических свойств металла трубы от величины деформации. Осуществляют выбор из документации параметров механических свойств металла трубы. Определяют величину деформации
Изобретение относится к области испытаний металлических конструкций и может быть использовано для определения величины холодной пластической деформации, приобретенной металлом стальной конструкции при ее изготовлении и накопленной в процессе длительной эксплуатации, а также для оценки остаточного ресурса металла длительно эксплуатируемых электросварных труб и других стальных конструкций. При длительной эксплуатации под действием рабочих нагрузок происходит деформационное старение (в дальнейшем старение) металла стальных конструкций. Результатом старения является изменение в худшую сторону (деградация) механических свойств, в частности потеря пластичности и охрупчивание металла, что может отрицательно сказаться на работоспособности конструкции. Известен способ определения напряженно-деформированного состояния и остаточного ресурса стальных металлоконструкций (журнал “Заводская лаборатория. Диагностика материалов” №9. 1999. том 65, 1999, стр.53-57; РД ИКЦ “КРАН-007-97”). Способ заключается в том, что прибором измеряют величину коэрцитивной силы Нс в различных участках конструкции. Из листа (профиля) той же марки стали вырезают плоский образец, нагружают его статическим растяжением до разрушения. Нагрузку увеличивают ступенчато с разгрузкой до нуля после каждой ступени. Коэрцитивную силу измеряют в направлении вдоль приложенной нагрузки после каждого приложения и снятия нагрузки. Сопоставляя результаты значений Нс, полученные на конструкции, со значениями, полученными при растяжении плоского образца, определяют, какой области диаграммы нагружения (упругой, упругопластической, зоне разрушения) соответствует структура металла конструкции на момент обследования. За предельное принимают состояние перехода металла конструкции в пластическую стадию. Упомянутый способ может привести к ошибочным выводам по следующим причинам: – значение коэрцитивной силы для конструкций из одной и той же марки стали может существенно отличаться, так как оно обусловлено не только условиями эксплуатации, но и способом производства стали, технологией производства профиля, из которого изготавливается конструкция, термической обработкой и многими другими факторами; – зависимость коэрцитивной силы от величины напряжений Hc=f( – элементы большинства стальных конструкций при их производстве претерпевают значительные пластические деформации, следовательно, имеют большие значения Hc и в соответствии с обсуждаемым способом могут быть забракованы сразу после изготовления. Известен способ определения остаточного ресурса металла труб магистрального газопровода, заключающийся в том, что из труб аварийного запаса или металла, подвергнутого предварительной термообработке, изготавливают пластины металла трубопровода, подвергают их искусственному деформационному старению с различной степенью пластической деформации, изготавливают из пластин образцы, которые подвергают механическим испытаниям; из нормативно-технической документации, действующей на момент строительства обследуемого трубопровода, выбирают параметры механических свойств металла трубопровода. На основании анализа фактического пространственного положения трубопровода и его конструктивных параметров определяют участки трубопровода с максимальным уровнем окружных напряжений, из наиболее нагруженных участков трубопровода изготавливают образцы, по результатам испытаний которых определяют значения выбранных параметров механического состояния металла трубопровода. По результатам испытания образцов металла, изготовленных из предварительно деформированных пластин, определяют значения выбранных параметров механических свойств металла трубопровода и для каждого выбранного параметра механических свойств металла трубопровода устанавливают аппроксимированную функциональную зависимость этого параметра от величины пластической деформации металла трубопровода, по этим аппроксимированным функциональным зависимостям и значениям соответствующих параметров механического состояния образцов металла, изготовленных из исследуемого трубопровода, определяют величину пластической деформации металла трубопровода, которую он имеет на момент исследования. Для каждого выбранного параметра механических свойств металла трубопровода определяют коэффициент связи величины пластической деформации металла трубопровода со временем работы трубопровода, на основании которого, а также параметров аппроксимированной функциональной зависимости величины соответствующего параметра механических свойств металла трубопровода от величины его пластической деформации и величины заданного нормативного показателя соответствующего параметра механических свойств исследуемого металла определяют ресурс металла исследуемого трубопровода до достижения заданного нормативного показателя. Для каждого выбранного параметра механических свойств металла трубопровода определяют величину остаточного ресурса как разность между ресурсом металла трубопровода до достижения заданного нормативного показателя и временем его эксплуатации на момент исследования. В качестве остаточного ресурса металла исследуемого трубопровода принимают минимальный остаточный ресурс, соответствующий одному из выбранных параметров механических свойств металла трубопровода (патент РФ №2221231 от 05.03.2002 г., G01N 3/00). Описанный способ выбран авторами в качестве прототипа как совпадающий с заявляемым решением по главному признаку, решающему задачу определения остаточного ресурса металла обследуемых труб. Таким признаком является определение величины пластической деформации, приобретенной металлом трубы в процессе эксплуатации Однако предложенный в прототипе способ определения остаточного ресурса имеет ряд недостатков, главным из которых является низкая достоверность, обусловленная тем, что за исходные данные в нем принимают значения механических характеристик металла труб аварийного запаса той же марки стали или металла обследуемой трубы, подвергнутого термической обработке. Поскольку металл труб одной марки стали имеет большой разброс значений механических характеристик, механические свойства стали после термической обработки определяются параметрами ее режима, а в способе параметры режима термообработки не оговорены, то достоверность определения степени деградации и остаточного ресурса по обсуждаемому способу будет зависеть от того, насколько в действительности соответствовали свойства металла трубы аварийного запаса и обследуемой трубы после термической обработки свойствам металла обследуемой трубы в начале ее эксплуатации. В случае восстановления исходных свойств металла обследуемой электросварной трубы термической обработкой появляется дополнительная погрешность определения остаточного ресурса. Это следует из того, что деформационное старение металла трубы складывается из двух составляющих старения на базе пластической деформации, приобретенной металлом трубы в процессе ее производства Целью настоящего изобретения является повышение достоверности оценки остаточного ресурса металла длительно эксплуатируемых стальных труб. Технической задачей настоящего изобретения является более точное определение пластической деформации Поставленная задача достигается за счет того, что в заявляемом способе определения остаточного ресурса металла длительно эксплуатируемых стальных труб, включающем вырезку в направлении поперек продольной оси трубы заготовок под образцы, деформирование и искусственное их старение, измерение коэрцитивной силы, изготовление и механические испытания образцов, аппроксимацию зависимости изменения параметров механических свойств металла обследуемой трубы от величины пластической деформации, выбор из нормативно-технической документации параметров механических свойств металла трубы, определение величины деформации В заявляемом способе каждая заготовка до изготовления из нее образцов подвергается неоднократному приросту деформации и последующему искусственному старению после каждой ступени деформирования, что точнее воспроизводит процесс естественного старения. Величина пластической деформации, имеющаяся в трубе, является решающим фактором, определяющим степень старения металла трубы. Поскольку значение коэрцитивной силы в металле конкретной трубы строго определено величиной пластической деформации, имеющейся в трубе, заготовки под образцы следует вырезать из участков труб с наибольшим значением коэрцитивной силы. Для выявления таких участков измеряют величину коэрцитивной силы по длине и периметру труб. В качестве нормативных параметров механических свойств металла выбирают регламентированные соответствующими документами, действующими на момент обследования газопровода, например отношение предела текучести к временному сопротивлению ( Предлагаемый способ может быть применен для определения остаточного ресурса металла горячекатаных и электросварных труб всех марок ферромагнитных сталей и способов производства из них листа. Последовательность выполнения операций по предлагаемому способу рассмотрим на примере определения остаточного ресурса всплывшего участка магистрального газопровода «Бухара – Урал». Пример. Газопровод построен в 1963 году. Всплывший участок вырезан в 1999 году. Протяженность участка 150 метров. Размер труб 1020×10 мм. Материал труб сталь марки 17ГС. По результатам измерения значений коэрцитивной силы по длине и периметру для исследования выбрали одну трубу. Наибольшее местное значением коэрцитивной силы на этой трубе составило величину Нэ с=5,4 А/см. Из этого места трубы в направлении поперек продольной оси трубы вырезали 7 заготовок под образцы размером 350×11×10 мм. Для получения значений параметров механических свойств металла обследуемой трубы из одной заготовки вырезали и испытали образцы на растяжение и ударный изгиб. Результаты механических испытаний металла обследуемой трубы представлены в табл.1
Испытания на растяжение проводили по ГОСТ 1497-78, на ударный изгиб по ГОСТ 9454-78. Для определения величины Как видно из табл.2, остаточный ресурс металла трубы следует определять по ударной вязкости, так как она первой достигла нормативного уровня KCV=3,0 кгс·м/см2. Результаты испытаний на ударную вязкость аппроксимируются с достоверностью R2=0,894 уравнением
По аппроксимирующей зависимости для нормативного значения KCV=3,0 кгс·м/см2 определяем
Номер заготовки соответствует ступени деформации, после которой из нее изготавливали и испытывали образцы. Для определения величины Результаты табл.3 аппроксимируются с достоверностью R2=0,9931 уравнением
По аппроксимирующей зависимости для значения Нэ с=5,39 А/см определяем Таким образом, в рассматриваемом примере величина При определении остаточного ресурса металла горячекатаных труб по предлагаемому способу операцию 2 не проводят. По определенным величинам где Тост – остаточный ресурс металла трубопровода, лет; Тэ – срок эксплуатации газопровода на момент его обследования, лет. Для рассматриваемого примера: Предлагаемый способ определения остаточного ресурса металла длительно эксплуатируемых стальных труб позволит повысить достоверность определения остаточного ресурса металла исследуемых труб.
Формула изобретения
Способ определения остаточного ресурса металла длительно эксплуатируемых стальных труб, включающий вырезку в направлении поперек продольной оси трубы заготовок под образцы, деформирование и искусственное их старение, измерение коэрцитивной силы, изготовление и механические испытания образцов, аппроксимацию зависимости изменения параметров механических свойств металла обследуемой трубы от величины пластической деформации, выбор из нормативно-технической документации параметров механических свойств металла трубы, определение величины деформации
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||