Патент на изобретение №2338971

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2338971 (13) C1
(51) МПК

F25B9/04 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.10.2010 – может прекратить свое действие

(21), (22) Заявка: 2007107317/06, 16.02.2007

(24) Дата начала отсчета срока действия патента:

16.02.2007

(46) Опубликовано: 20.11.2008

(56) Список документов, цитированных в отчете о
поиске:
МАРТЫНОВ А.В. и др. Что такое вихревая труба? – М.: Энергия, 1976, с.6-33. SU 1079973 A, 15.03.1984. SU 937918 A, 23.06.1982. GB 762563 A, 28.11.1956. GB 850727 A, 05.10.1960. GB 1046616 A, 26.10.1966.

Адрес для переписки:

420073, г.Казань, 73, ул. Гвардейская, 35а, кв.46, Ю.А. Кирсанову

(72) Автор(ы):

Кирсанов Юрий Анатольевич (RU),
Коростелев Иван Александрович (RU),
Биктагиров Булат Рашидович (RU)

(73) Патентообладатель(и):

Казанский научный центр Российской академии наук (КазНЦ РАН) (RU)

(54) ВИХРЕВАЯ ТРУБА

(57) Реферат:

Изобретение относится к теплофизике, газодинамике, энергетике и касается способа вихревого энергоразделения потока газа. Вихревая труба, включающая тангенциальный или улиточный входной патрубок, цилиндрическую рабочую камеру, выходной патрубок горячего газа, дроссель и выходной патрубок холодного газа, снабжена поочередно расположенными холодными и горячими цилиндрическими участками рабочей камеры. Холодные участки представляют собой кольцевые замкнутые контуры, в которых циркулирует холодный теплоноситель. Горячие участки могут представлять собой кольцевые замкнутые контуры, в которых циркулирует горячий теплоноситель. Горячие участки могут быть выполнены в виде колец из термостойкого электроизоляционного материала с внутренней кольцевой полостью, в которую вставлена электроспираль с выведенными наружу клеммами, закрепленная внутри с помощью термоцемента. Горячие участки могут быть выполнены в виде металлического кольцевого желоба, в котором размещается электроспираль, изолированная от желоба керамическими чешуйчатыми бусами. При этом клеммы спирали размещены на термостойком изоляторе, а желоб снаружи закрыт металлическими экранами. На выходном патрубке холодного газа располагается насадка с наружным диаметром (0,65…0,85)·D, где D – внутренний диаметр цилиндрической камеры. Техническим результатом является повышение эффективности энергоразделения за счет увеличения разности температур между горячим и холодным потоками газа и снижения газодинамических потерь потока. 4 з.п. ф-лы, 5 ил.

Изобретение относится к теплофизике, газодинамике, энергетике и касается способа вихревого энергоразделения потока газа.

Изобретение может быть применено в различных энергетических системах – в стационарных и транспортных энергетических установках, в системах отопления, охлаждения и кондиционирования, на газораспределительных станциях, в доменном производстве и др.

Известна вихревая труба, содержащая тангенциальный или улиточный входной патрубок, рабочую цилиндрическую камеру, диафрагму для выхода холодного газа, дроссель для выхода горячего газа (см. книгу Меркулов А.П. Вихревой эффект и его применение в технике. М.: Машиностроение, 1969, – 184 с. [1]).

Недостатком этого устройства является низкая эффективность энергоразделения, обусловленная недостаточно большой разностью температур между горячим и холодным газами и высокими газодинамическими потерями потока.

Наиболее близким к предлагаемому изобретению по технической сущности является вихревая труба, включающая тангенциальный или улиточный входной патрубок, цилиндрическую рабочую камеру, выходной патрубок горячего газа, дроссель и выходной патрубок холодного газа (см. книгу Мартынов А.В. и др. Что такое вихревая труба?, М.: Энергия, 1976, с.6-33 [2]).

Недостатками этого устройства являются недостаточно высокая эффективность энергоразделения, обусловленная неупорядоченным (хаотичным) тепловым взаимодействием отдельных частиц друг с другом, из-за чего амплитуда температурных колебаний отдельных частиц не превосходит колебаний температуры газа вследствие его адиабатного расширения и сжатия на величину 1*/рх*, где p1* и рх* – полные давления газа перед закруткой (на входе в вихревую трубу) и на выходе холодного потока. Поэтому повышение разности температур между горячим и холодным потоками в известном устройстве требует повышения степени расширения потока , или, другими словами, повышения газодинамического сопротивления (потерь давления в вихревой трубе).

Цель изобретения – повышение эффективности энергоразделения за счет увеличения разности температур между горячим и холодным потоками газа и снижения газодинамических потерь потока.

Цель достигается тем, что вихревая труба, включающая тангенциальный или улиточный входной патрубок, цилиндрическую рабочую камеру, выходной патрубок горячего газа, дроссель и выходной патрубок холодного газа, снабжена поочередно расположенными холодными и горячими цилиндрическими участками рабочей камеры, при этом холодные участки представляют собой кольцевые замкнутые контуры, в которых циркулирует холодный теплоноситель.

Горячие участки могут представлять собой кольцевые замкнутые контуры, в которых циркулирует горячий теплоноситель.

Горячие участки могут быть выполнены в виде колец из термостойкого электроизоляционного материала с внутренней кольцевой полостью, в которую вставлена электроспираль с выведенными наружу клеммами, закрепленная внутри с помощью термоцемента.

Горячие участки могут быть выполнены в виде металлического кольцевого желоба, в котором размещается электроспираль, изолированная от желоба керамическими чешуйчатыми бусами, клеммы спирали размещены на термостойком изоляторе, а желоб снаружи закрыт металлическими экранами.

Кроме того, на выходном патрубке холодного газа располагается насадка с наружным диаметром (0,65…0,85)·D, где D – внутренний диаметр цилиндрической камеры.

На фиг.1 представлена схема устройства для осуществления предлагаемого способа (вихревая камера); на фиг.2 – холодный и горячий участки цилиндрической стенки вихревой камеры; на фиг.3 и 4 – варианты горячего участка; на фиг.5 – результаты исследований влияния наружного диаметра насадки на газодинамическое сопротивление вихревой камеры.

Предлагаемая вихревая камера (фиг.1) состоит из тангенциального или улиточного входного патрубка 1, цилиндрической рабочей камеры, состоящей из холодных 2 и горячих 3 участков, выходного патрубка горячего газа 4, дросселя 5, выходного патрубка холодного газа 6 и насадки 7.

Холодные и горячие участки представляют собой кольцевые пустотелые элементы 12 (фиг.2) с внутренней перегородкой 13, закрытые обечайкой 14. Для подвода и отвода холодного или горячего теплоносителей служат два штуцера 15.

Горячие участки могут выполняться также в виде кольца 16 (фиг.3) из термостойкого электроизоляционного материала (керамика, асбоцемент) с внутренней кольцевой полостью 17, в которую вставлена электроспираль 18 с выведенными наружу клеммами 19, закрепленная внутри с помощью термоцемента 20.

Другой вариант горячего участка (фиг.4) состоит из металлического кольцевого желоба 21, в котором размещается электроспираль 22, изолированная от желоба керамическими чешуйчатыми бусами 23. Клеммы 24 спирали 22 размещены на термостойком изоляторе 25. Для уменьшения потерь тепла в окружающую среду желоб с электроспиралью снаружи закрывается металлическими экранами 26 и 27.

Работает вихревая камера следующим образом.

Исходный поток газа 8 (фиг.1) подается в рабочую камеру, где закручивается с помощью входного тангенциального или улиточного патрубка 1 и периодически охлаждается и нагревается от кольцевых участков 2 и 3. Под действием возникающей в потоке турбулентности частицы газа пульсируют; пульсации в радиальном направлении способствуют адиабатным изменениям их температуры [1]. При достаточно интенсивных и регулярных пульсациях в результате теплообмена частиц друг с другом возникает резонанс колебаний их температуры, в результате чего температура осевых слоев газа понижается, а периферийных (пристенных) повышается. Периодическое многократное охлаждение (отвод теплоты Qохл) и нагревание (подвод теплоты Qнагр) периферийных слоев газа с помощью холодных 2 и горячих 3 участков боковой цилиндрической стенки рабочей камеры способствует увеличению разности температур между горячим и холодным потоками после энергоразделения. После энергоразделения горячий 10 и холодный 11 потоки газа отводятся соответственно через дроссель 5, патрубок 4 и патрубок 6. Генерируемая с помощью насадки 7 последовательность вихрей 9 (вихревая дорожка Кармана, см. книгу Шлихтинг Г. Теория пограничного слоя. – М.: Наука, 1974, – 712 с.) способствует упорядочиванию турбулентности, что, в свою очередь, создает благоприятные условия для увеличения амплитуды температурных колебаний в частицах и снижения газодинамических потерь в вихревой камере.

Экспериментальные исследования, результаты которых показаны на фиг.5, позволили выявить оптимальное значение наружного диаметра dн насадки 7, составляющее (0,65…0,85)·D, где D – внутренний диаметр цилиндрической камеры. Линии 28-33 соответствуют разным диаметрам патрубка 6.

Сопоставительный анализ с прототипом [2] показал, что заявляемая вихревая труба отличается от известного устройства наличием в цилиндрической стенке ряда поочередно расположенных друг за другом холодных и горячих участков. Кроме того, на выходном патрубке холодного газа располагается насадка наружным диаметром (0,65…0,85)·D, где D – внутренний диаметр цилиндрической камеры.

Указанные отличительные признаки являются существенными, так как каждый из них влияет на отдельные компоненты эффекта энергоразделения, а их совокупность позволяет получить требуемый технический результат.

Таким образом, заявляемое устройство соответствуют критериям «новизна» и «изобретательский уровень».

Использование предлагаемой вихревой трубы позволит по сравнению с прототипом [2] повысить эффективность энергоразделения за счет увеличения разности температур между горячим и холодным потоками газа и снижения газодинамических потерь вихревой камеры, что расширит область его применения.

Формула изобретения

1. Вихревая труба, включающая тангенциальный или улиточный входной патрубок, цилиндрическую рабочую камеру, выходной патрубок горячего газа, дроссель и выходной патрубок холодного газа, отличающаяся тем, что она снабжена поочередно расположенными холодными и горячими цилиндрическими участками рабочей камеры, при этом холодные участки представляют собой кольцевые замкнутые контуры, в которых циркулирует холодный теплоноситель.

2. Вихревая труба по п.1, отличающаяся тем, что горячие участки представляют собой кольцевые замкнутые контуры, в которых циркулирует горячий теплоноситель.

3. Вихревая труба по п.1, отличающаяся тем, что горячие участки выполнены в виде колец из термостойкого электроизоляционного материала с внутренней кольцевой полостью, в которую вставлена электроспираль с выведенными наружу клеммами и закрепленная внутри с помощью термоцемента.

4. Вихревая труба по п.1, отличающаяся тем, что горячие участки выполнены в виде металлического кольцевого желоба, в котором размещается электроспираль, изолированная от желоба керамическими чешуйчатыми бусами, клеммы спирали размещены на термостойком изоляторе, а желоб снаружи закрыт металлическими экранами.

5. Вихревая труба по п.1, отличающаяся тем, что на выходном патрубке холодного газа располагается насадка с наружным диаметром (0,65÷0,85)·D, где D – внутренний диаметр цилиндрической камеры.

РИСУНКИ

Categories: BD_2338000-2338999