Патент на изобретение №2335358

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2335358 (13) C2
(51) МПК

B21B1/46 (2006.01)
C21D8/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.10.2010 – действует

(21), (22) Заявка: 2006136036/02, 03.03.2006

(24) Дата начала отсчета срока действия патента:

03.03.2006

(30) Конвенционный приоритет:

05.03.2005 DE 102005010243.3

(43) Дата публикации заявки: 10.05.2008

(46) Опубликовано: 10.10.2008

(56) Список документов, цитированных в отчете о
поиске:
ЕР 1067203 А1, 10.01.2001. RU 2074900 C1, 10.03.1997. RU 2172652 C2, 27.08.2001. RU 2089307 C1, 10.09.1997. RU 2106212 C1, 28.10.1992. ЕР 0885974 А1, 23.12.1998. RU 2150347 C1, 10.06.2000.

(85) Дата перевода заявки PCT на национальную фазу:

11.10.2006

(86) Заявка PCT:

EP 2006/001954 (03.03.2006)

(87) Публикация PCT:

WO 2006/094718 (14.09.2006)

Адрес для переписки:

129010, Москва, ул. Б.Спасская, 25, стр.3, ООО “Юридическая фирма Городисский и Партнеры”, пат.пов. Г.Б. Егоровой, рег.№ 513

(72) Автор(ы):

КЕМПКЕН Йенс (DE),
РАЙФФЕРШАЙД Маркус (DE),
ГИРГЕНЗОН Альбрехт (DE)

(73) Патентообладатель(и):

СМС ДЕМАГ АГ (DE)

(54) СПОСОБ ПОЛУЧЕНИЯ СТАЛИ ДЛЯ ЛЕГКИХ КОНСТРУКЦИЙ С ВЫСОКИМ СОДЕРЖАНИЕМ МАРГАНЦА

(57) Реферат:

Изобретение относится к производству стали с высоким содержанием марганца. Для получения непрерывной разливкой высокомарганцовистых сталей, согласно изобретению сталь для легких конструкций, имеющую химический состав с 15-27% марганца, 1-6% алюминия, 1-6% кремния, 0,8% или менее углерода, и остаток железа и неизбежные примеси, разливают в заготовку толщиной d120 мм на машине непрерывной разливки стали с применением литейного порошка, затем делят на слябы, при этом в литейный порошок введены подходящее минералы, которые обеспечивают снижение скорости восстановления оксида SiO2 алюминием, содержащимся в стали, и/или снижение достигаемой концентрации Al2О3 путем снижения вязкости шлака в кристаллизаторе, непосредственно после окончания кристаллизации и разделения непрерывной заготовки на слябы осуществляют выравнивание температуры сляба в промежуточной печи, расположенной в технологической линии, сляб без промежуточного охлаждения подвергают горячей прокатке. 5 з.п. ф-лы, 1 ил.

Изобретение относится к способу и устройству для получения горячекатаной полосы из хорошо деформируемой при холодной прокатке, высокопрочной аустенитной стали для легких конструкций с повышенным содержанием марганца (Mn), алюминия (Al) и кремния (Si), а также обладающей TWIP-эффектом (пластичность, вызванная двойникованием кристаллической решетки), при этом сталь первоначально разливают на установке непрерывной разливки в бесконечную заготовку, которую делят на слябы и затем прокатывают до конечной толщины.

Аустенитные стали для легкий конструкций, обладающие TWIP-эффектом и применяемые для изготовления, например, корпусных элементов, корпусных элементов с элементами жесткости, в том числе криогенных емкостей и трубопроводов, согласно документу EP 0889144 B1 имеют следующий химический состав: 10-30% Mn, 1-6% Si, 1-8% Al (при этом сумма Al+Si меньше или равна 12%), и остаток Fe.

В документе DE 19900199 A1 описана высокопрочная сталь для легких конструкций, содержащая: 7-30% Mn, 1-10% Al, 0,7-4% Si, 10%Cr, 10% Ni, 3% Cu и 0,5% С, а также в качестве необязательных легирующих элементов N, V, Nb, Ti, P, при этом сталь обладает высокими механическими свойствами и высокой коррозионной стойкостью, а также стойкостью к точечной коррозии под напряжением. Такая сталь разливается методом непрерывной разливки и затем подвергается горячей прокатке или непосредственно разливается в тонкую полосу конечных размеров.

Производство стали с высоким содержанием марганца благодаря целому ряду причин рассматривается в сегодняшнем уровне техники как сложное или невозможное. Названными причинами являются: сниженная прочность корочки при затвердевании заготовки, вызываемая сильной микросегрегацией марганца (опасность прорыва металла при Mn>15%), высокая прочность при низких температурах (перегрузка установок, проблема возникновения трещин), взаимодействие алюминия, содержащегося в стали, с литейным порошком (ограничение функции последнего), макросегрегация, усвоение водорода и/или кислорода при распылительном водяном охлаждении, увеличенное количество неметаллических включений, обогащение легирующими элементами кромки полосы, а также окисление по границам зерен при повторном нагреве слябов в методических печах.

В публикации Spitzer и др. «Innovative Stahlprodukte – Herausforderung für die Prozessentwicklung», Konfernz-Einzelbericht: Barbara 2001, стр.71-84, указано, что стали с повышенным содержанием марганца являются более сложными для разливки. С одной стороны, такие стали при высоких температурах после начала кристаллизации имеют низкую прочность, так как марганец при высоком содержании обогащает остаточный, незатвердевший расплав и снижает температуру плавления в междендритных областях. За счет этого возрастает склонность к прорыву металла, что согласно сегодняшнему уровню техники делает невозможной непрерывную разливку стали с содержанием марганца 15% и выше. С другой стороны, при низких температурах стали обладают очень высокой прочностью, так что при изгибе заготовки возникает перегрузка оборудования и повышается опасность возникновения трещин. Далее при содержании алюминия несколько процентов, как имеется в указанных сталях, возникает снижение плотности стали, взаимодействие с литейным порошком, что ухудшает его функционирование.

В другой публикации Gigacher и др. «Eigenschaften hochmanganhaltigen Stähle unter stranggiessähnlichen Bedingungen» ВНМ 149 (2004) Heft 3, стр.112-117 резюмируется, что при разливке подобных легированных сталей для получения TWIP-эффекта не является предпочтительным использование литейного порошка.

Существующая проблема при разливке сталей с высоким содержанием алюминия (более 1%) объясняется взаимодействием алюминия, содержащегося в стали, с оксидными компонентами литейного порошка. Вследствие восстановления оксида кремния, содержащегося в шлаке при разливке, алюминием, содержащимся в стали, образуется Al2O3, который ассимилируется шлаком, за счет чего повышается основность шлака (отношение СаО/SiO2). Следствием является то, что вязкость и характеристики плавления шлака в кристаллизаторе существенно меняются. Исходя из названных проблем, ранее применялись различные способы производства сталей с TWIP-эффектом.

В документе WO 02/101109 A1 описан способ, согласно которому, за счет повышения концентрации углерода (С1%) и за счет присадки дополнительных легирующих элементов, таких как бор, и никель, медь, азот, ниобий, титан, ванадий, фосфор, достигается существенное снижение предела текучести и улучшение деформируемости при горячей и холодной прокатке. Для получения такой стали заготовка (сляб, тонкий сляб или полоса) нагревается и с учетом определенных температурных границ подвергается горячей прокатке и смотке.

В документе EP 1341937 B1 описан способ, при котором сталь, содержащая от 12 до 30% марганца, разливается на двухвалковой литейной машине в тонкую полосу толщиной от 1 до 6 мм, вертикально выходящая из литейного зазора полоса охлаждается посредством подачи охлаждающего средства на поверхность полосы и за один проход прокатывается до конечной толщины. Общее время, проходящее между выходом полосы из литейного зазора и входа в прокатную клеть, составляет примерно 8 секунд.

Из документа EP 1067203 B1 известен способ получения полосы их сплава Fe-C-Mn, при котором сначала посредством двухвалковой литейной машины производят тонкую стальную полосу с толщиной от 1,5 до 10 мм и со следующим составом: Mn 6-30%, C 0,001-1,6, Si2,5%, Al6%, Cr10%, а также неизбежные примеси, полосу обжимают с коэффициентом обжатия 10-60% и затем на одном или нескольких последующих этапах подвергают горячей прокатке.

Исходя из указанного уровня техники, задачей настоящего изобретения является создание способа и устройства, которые наиболее легко реализуются и обеспечивают получение непрерывной разливкой высокомарганцовистых сталей с заданным химическим составом.

Поставленная задача в части способа решается отличительными признаками пункта 1 формулы, согласно которым при последовательных этапах способа сталь для легких конструкций, имеющую заданный химический состав с 15-27% марганца, 1-6% алюминия, 1-6% кремния, 0,8% или менее углерода, и остаток железо и неизбежные примеси:

разливают в заготовку на машине непрерывной разливки тонких слябов (d120 мм) с применением подходящего литейного порошка, который быстро достигает равновесия и затем не меняет своих характеристик плавления, и затем делят на слябы;

непосредственно после окончания кристаллизации и разделения заготовки на слябы осуществляют выравнивание температуры сляба в промежуточной печи, расположенной в технологической линии;

сляб без промежуточного охлаждения подвергают горячей прокатке.

При изготовлении тонкого сляба, например, на CSP литейной машине (CSP – производство тонких слябов) непрерывная заготовка транспортируется вертикально, по окончании кристаллизации изгибается в горизонтальное направление и делится на слябы. Таким образом, отсутствует проблема с возникновением внутренних трещин. Изготовление высокопрочной аустенитной стали достигается, в отличие от уровня техники, без перегрузки оборудования.

Микросегрегация, которая имеется в заготовке по окончании кристаллизации, в значительной мере исчезает благодаря диффузии или при прохождении заготовки через промежуточную печь, например через печь с роликовым подом, или при последующей прокатке. Макросегрегация в середине сляба в достаточной степени устраняется, как и в случае аустенитной нержавеющей стали при сильном обжатии в прокатном стане.

Преимущественно, при применении печи с роликовым подом в CSP установке, согласно изобретению, за счет сокращения времени прохождения устраняется существенная сегрегация легирующих элементов и окисление по границам зерен, что встречается при больших временах нагрева в методических печах традиционной линии для горячей прокатки полосы и ведет к заметным трудностям.

Чтобы использовать способ разливки сталей с TWIP-эффектом для легких конструкций, содержащих значительные количества марганца и алюминия, с использованием машины для непрерывной разливки тонких слябов, требуется применение подходящего литейного порошка. Такой подходящий литейный порошок обладает, согласно изобретению, свойством очень быстро достигать равновесия и затем не менять свои характеристики плавления.

Для того чтобы, например, уменьшить равновесие реакции восстановления SiO2 алюминием, растворенным в стали, литейный порошок, согласно изобретению, содержит повышенное количество Al2O3 более 10%. Для того, чтобы в состоянии равновесия иметь большие количества SiO2, альтернативно или дополнительно следует повысить долю SiO2 в литейном порошке, при этом такое повышение следует осуществлять до значений основности (соотношение CaO/SiO2) 0,5-0,7.

Так как оксид MnO2 восстанавливается алюминием, содержащимся в стали, легче, чем оксид SiO2, то оксид SiO2 защищен от восстановления, таким образом, согласно изобретению, другим мероприятием может являться добавка MnO2 к литейному порошку.

Согласно изобретению в литейном порошке часть оксида SiO2 может быть заменена оксидом TiO2, который, как и оксид SiO2, является газообразующим, но не восстанавливается алюминием, содержащимся в стали.

Заключительная возможность состоит в снижении вязкости литейного порошка в кристаллизаторе. К этому расход литейного порошка может повышаться, за счет чего повышается количество связываемого Al2O3, так что достигается равновесное состояние при меньшем содержании оксида алюминия. Снижение вязкости достигается присадками к литейному порошку B2O3 (бората), Na2O и/или Li2O.

Далее на схематическом чертеже представлен способ и установка для получения горячекатаной полосы согласно изобретению.

В принципе речь идет о применении известной CSP установки, в которой, согласно изобретению, расстояния между отдельными компонентами установки изменяют таким образом, что способ согласно изобретению осуществляют так, что непосредственно после окончания кристаллизации в промежуточной печи осуществляют усреднение температуры, и затем сляб без промежуточного охлаждения подвергают горячей прокатке.

Показанная на чертеже установка состоит из машины 1 для литья тонких слябов и расположенной за ней промежуточной печи 4, в которую подают полученные из бесконечной заготовки 2 после кристаллизации слябы 3. За промежуточной печью 4 расположен прокатный стан 5, в котором сляб 3 после усреднения по температуре в промежуточной печи 4 повергается горячей прокатке в готовую полосу 6, без промежуточного охлаждения.

Формула изобретения

1. Способ получения горячекатаной полосы (6) из хорошо деформируемой в холодном состоянии, высокопрочной аустенитной стали для легких конструкций с высоким содержанием марганца (Mn), алюминия (Al) и кремния (Si), а также обладающей пластичностью, вызванной двойникованием кристаллов- TWIP-эффектом, включающий разливку стали на машине (1) непрерывной разливки в непрерывную заготовку (2), разделение ее в слябы (3) и прокатку до конечной толщины, отличающийся тем, что сталь имеет химический состав, мас.%:

марганец 15-27
алюминий 1-6
кремний 1-6
углерод 0,8 или менее
железо и
неизбежные примеси остальное

и ее разливают в заготовку толщиной d120 мм с применением литейного порошка, затем делят на слябы (3), при этом в литейный порошок вводят минералы-оксиды, которые обеспечивают снижение скорости восстановления оксида SiO2 алюминием, содержащимся в стали и/или снижение концентрации Al2O3 путем снижения вязкости шлака в кристаллизаторе, непосредственно после окончания кристаллизации и разделения непрерывной заготовки (2) на слябы (3) осуществляют выравнивание температуры сляба (3) в промежуточной печи (4), расположенной в технологической линии, а затем сляб (3) без промежуточного охлаждения подвергают горячей прокатке.

2. Способ по п.1, отличающийся тем, что литейный порошок имеет содержание оксида Al2O3 более 10%.

3. Способ по п.1 или 2, отличающийся тем, что литейный порошок имеет повышенное содержание SiO2 и основность в виде CaO/SiO2, равную 0,5-0,7.

4. Способ по п.1 или 2, отличающийся тем, что литейный порошок содержит MnO2 и/или TiO2.

5. Способ по п.1 или 2, отличающийся тем, что для снижения вязкости литейный порошок содержит В2O3 (борат), Na2O и/или Li2O.

6. Способ по п.1 или 2, отличающийся тем, что промежуточной печью (4) является печь с роликовым подом.

РИСУНКИ

Categories: BD_2335000-2335999