Патент на изобретение №2333912

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2333912 (13) C1
(51) МПК

C07F7/30 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 19.10.2010 – действует

(21), (22) Заявка: 2006146303/04, 26.12.2006

(24) Дата начала отсчета срока действия патента:

26.12.2006

(46) Опубликовано: 20.09.2008

(56) Список документов, цитированных в отчете о
поиске:
RU 2104032 С1, 17.08.1998. RU 2233286 C1, 17.08.1998.

Адрес для переписки:

119121, Москва, 1-й Неополимовский пер., 3/10, кв.19, О.Н. Куренной

(72) Автор(ы):

Исаев Александр Дмитриевич (RU),
Башкирова Светлана Александровна (RU)

(73) Патентообладатель(и):

Общество с ограниченной ответственностью “Сафрон” (ООО “САФРОН”) (RU)

(54) СОЛИ 1-ГИДРОКСИГЕРМАТРАНА С ОКСИ-, КЕТО- И ДИКАРБОНОВЫМИ КИСЛОТАМИ

(57) Реферат:

Данное изобретение относится к элементоорганической химии и химической технологии. Описаны новые соли 1-гидроксигерматрана с окси-, кето- и дикарбоновыми кислотами, а именно 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилаты. Созданы новые вещества повышенной чистоты, получено расширение знаний о структуре соединений 1-гидроксигерматрана с окси-, кето- и дикарбоновыми кислотами, что расширяет класс соединений 1-гидроксигерматрана. Новые соли биоактивны, с широким спектром действия, могут найти применение в качестве новых средств в фармакотерапии, в медицине, медицинской, фармацевтической и пищевой промышленности, в том числе детском питании, для очистки воды, в косметологии, парфюмерии, стоматологии. 5 н.п.ф-лы, 3 табл.

Область техники

Данное изобретение относится к элементоорганической химии, химической технологии, конкретно, к новым солям 1-гидроксигерматрана с окси-, кето- и дикарбоновыми кислотами, а именно 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилатам формулы (I):

где Х=(-CH2(OH)CH-) (Ia), (-СН2СН2(O)С-) (Ib), (-С(О)СН2-) (Ic), (-CH2-CH2-) (Id), (-СН=СН-) (Ie).

Предшествующий уровень техники

Известны [Патент RU 2104032 [ООО «СНЕЖНЫЙ БАРС», ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А.] 17.08.1998, C07F 7/30, А61К 31/28 и Патент RU 2104033 [ООО «СНЕЖНЫЙ БАРС», ЩЕРБИНИН В.В, ЧЕРНЫШЕВ Е.А.] 17.08.1998, C07F 7/30, А61К 31/28] германийорганические соединения – производные 1-гидроксигерматрана, содержащие в качестве заместителя у атома Ge известный лекарственный препарат – например, ацикловир, или ацетилсалициловую кислоту, или парацетамол, или анальгин, или индометацин, или фталазол, или ампициллин, или адреналин, в соответствии с формулой (II):

где R – ОН, или органический радикал, или элементорганический радикал, в том числе лекарственный препарат или в соответствии с формулой (III), записанной в общем виде

где R1÷R12 – H, или органический радикал, X – О или S.

Производные 1-гидроксигерматрана (II, R – ОН, или органический радикал, или элементорганический радикал), содержащие в качестве заместителя кислоты – ацетилсалициловую кислоту, ампициллин в [Патент RU 2104032 [ООО «СНЕЖНЫЙ БАРС», ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А.] 17.08.1998, C07F 7/30, А61К 31/28] названы германиловыми эфирами (см. таблицу 9 [Патент RU 2104032 [ООО «СНЕЖНЫЙ БАРС», ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А.] 17.08.1998, C07F 7/30, А61К 31/28]), а в [Патент RU 2104033 [ООО «СНЕЖНЫЙ БАРС», ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А.] 17.08.1998, C07F 7/30, А61К 31/28] – герматраниловыми эфирами ацетилсалициловой и пенициллановой кислот.

Известны германийорганические соединения с органической кислотой (см. [Патент RU 2233286 [СОЛОВЬЕВ Е.В, ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А., КОТРЕЛЕВ М.В.] 17.08.1998, C07F 7/30, А61К 31/28]), в котором рассматриваются комплексы германийорганического соединения с лекарственными препаратами или биологически активными веществами общей формулы Lk(ГОС)m(Раств.)n (IV), где L – лекарственный препарат или биологически активное вещество (в том числе, ацетилсалициловая кислота, никотиновая кислота, аминокислоты и т.д.), k1, m1, n0, Раств. – неорганический или органический растворитель, ГОС – германийорганическое соединение (III, R – ОН, или тиогидроксил, или органический радикал, или элементорганический радикал, R1÷R12 – Н или органический радикал, или кислород (в качестве заместителя R1R2, R5R6 и R9÷R10), X – О или сера).

В источнике [Патент RU 2233286 [СОЛОВЬЕВ Е.В., ЩЕРБИНИН В.В, ЧЕРНЫШЕВ Е.А., КОТРЕЛЕВ М.В.] 17.08.1998, C07F 7/30, А61К 31/28] на с.5 упоминается о возможности донорно-акцепторного взаимодействия атома азота в молекуле ГОС с карбоксильной (тиокарбоксильной) группой лекарственного препарата или биологически активного вещества, но при этом соединение L в формулах (IV) координирует с атомом Ge. В данном источнике [Патент RU 2233286 [СОЛОВЬЕВ Е.В., ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А., КОТРЕЛЕВ М.В.] 17.08.1998, C07F 7/30, А61К 31/28] рассматриваются только комплексы германийорганических соединений с органическими кислотами.

В известных рассмотренных источниках, наиболее близких к предлагаемому изобретению, часть которых приведена здесь, не имеется каких-либо сведений об образовании солей герматранов, в частности с лекарственными препаратами или биологически активными веществами, в том числе с окси-, кето- и дикарбоновыми кислотами.

Способов получения комплексов или других соединений ГОС (III) с лекарственными средствами, органическими и неорганическими соединениями в патентах [Патент RU 2104032 [ООО «СНЕЖНЫЙ БАРС», ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А.] 17.08.1998, C07F 7/30, А61К 31/28] и [Патент RU 2104033 [ООО «СНЕЖНЫЙ БАРС», ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А.] 17.08.1998, C07F 7/30, А61К 31/28] не описано.

Известный способ получения комплекса формулы (IV) с ацетилсалициловой кислотой ([Патент RU 2233286 [СОЛОВЬЕВ Е.В., ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А., КОТРЕЛЕВ М.В.] 17.08.1998, C07F 7/30, А61К 31/28], с.14) осуществляется путем смешивания 0,1 М раствора ацетилсалициловой кислоты в этаноле (100 мл этанола) и 0,1 М раствора 1-этил-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3.01.5]-ундекан-3,7,10-триона (75 мл этанола) на магнитной мешалке в течение 14 часов при комнатной температуре и выделением из раствора на роторном испарителе. Выход 89%, температура плавления Тпл. равна 230-231°С.

По данным авторов [Патент RU 2233286 [СОЛОВЬЕВ Е.В., ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А., КОТРЕЛЕВ М.В.] 17.08.1998, C07F 7/30, А61К 31/28], результаты рентгеноструктурного анализа подтверждают наличие координационного взаимодействия между атомами германия и кислорода активной функциональной группы, длина связи составляет 1,8 А0. Тип взаимодействия ГОС (II, R – этил) и активной функциональной группы ацетилсалициловой кислоты, по мнению авторов, имеет вид комплекса с 6-ти валентным атомом Ge:

Среди описанных примеров в [Патент RU 2233286 [СОЛОВЬЕВ Е.В., ЩЕРБИНИН В.В., ЧЕРНЫШЕВ Е.А., КОТРЕЛЕВ М.В.] 17.08.1998, C07F 7/30, А61К 31/28] (см. три примера на с.14) получения комплексов отсутствует пример получения германийорганического соединения с окси-, кето- и дикарбоновыми кислотами. Нами также не найдены какие-либо упоминания о германийорганических соединениях с окси-, кето- и дикарбоновыми кислотами ни в каких известных нам источниках.

Раскрытие изобретения

Техническим результатом предложенного изобретения является создание новых веществ повышенной чистоты, расширение знаний о структуре соединений 1-гидроксигерматранов, а именно соединений 1-гидроксигерматрана с окси-, кето- и дикарбоновыми кислотами (с яблочной кислотой, с -кетоглутаровой кислотой, с щавелевоуксусной кислотой, с янтарной кислотой, с фумаровой кислотой), расширение ряда классов соединений 1-гидроксигерматранов, расширение класса солей.

Поставленный технический результат достигается тем, что предложены германийорганические соединения, представляющие собой 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилаты следующей общей формулы (I)

где Х=(-СН2(ОН)СН-) (Ia), (-CH2CH2(O)C-) (Ib), (-C(O)CH2-) (Ic), (-CH2-СН2-) (Id), (-СН=СН-) (Ie), и для каждой окси-, кето- и дикарбоновой кислоты предложенное германийорганическое соединение, соответственно, называется:

– 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий малат или, иначе, соль 1-гидроксигерматрана с яблочной кислотой, при этом формула (I) имеет вид [далее «формула (Ia)»]: –

– 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3,3.3]ундеканий -кетоглутарат или, иначе, соль 1-гидроксигерматрана с -кетоглутаровой кислотой, при этом формула (I) приобретает вид [далее «формула (Ib)»]: –

– 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий оксалоацетат или, иначе, соль 1-гидроксигерматрана с щавелевоуксусной кислотой, при этом формула (I) имеет вид [далее «формула (Ic)»]: –

– 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий сукцинат при Х=(-СН2-СН2-), иначе, соль 1-гидроксигерматрана с янтарной кислотой, при этом формула (I) имеет вид [далее «формула (Id)»]: –

– 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий фумарат или, иначе, соль 1-гидроксигерматрана с фумаровой кислотой, при этом формула (I) приобретает вид [далее «формула (Ie)»]: –

Отличием предложенных соединений формулы (I) является то, что предложены новые, ранее неизвестные соединения 1-гидроксигерматранов, объединенные единым замыслом. Предложенные соединения 1-гидроксигерматрана (I) являются солями 1-гидроксигерматрана с окси-, кето- и дикарбоновыми кислотами, (далее «соли 1-гидроксигерматрана (I)», а при рассмотрении солей с каждой кислотой в отдельности – «соль 1-гидроксигерматрана с (соответствующей) кислотой (Ia-Ie) соответственно»).

Не описаны в литературе ни их структура, ни их свойства. Также не были ранее известны какие-либо упоминания об использовании подобных соединений (I).

Совершенно неочевидным оказался факт образования «внешней ионной пары» с некоторой координацией между атомом азота и атомом углерода карбонильной группы. Образование солей 1-гидроксигерматрана (I), очевидно, происходит за счет разрыва внутримолекулярного донорно-акцепторного взаимодействия GeN в исходном 1-гидроксигерматране (II, R=OH), образования свободной пары электронов у атома азота, взаимодействующей с карбонильной группой (С=О).

Предложенные соли 1-гидроксигерматрана (I) были получены путем взаимодействия 1-гидроксигерматрана (II, R=OH) с соответствующей окси-, кето-, дикарбоновой кислотой в водном растворе, чем обеспечена дешевизна и простота получения предложенных солей при выходах 60-97% и высокой чистоте получаемого продукта.

Нами выявлена неочевидная возможность получения солей 1-гидроксигерматрана с окси-, или кето-, или дикарбоновыми кислотами по третичному атому азота. Основные известные особенности герматранов, связанные с существованием внутримолекулярного донорно-акцепторного взаимодействия азот – германий (GeN) (что доказано рентгеноструктурными исследованиями [С.Н.Гуркова, С.Н.Тандура и другие, Журнал общей химии, 1982, т.23, №4, сс.101-106]) позволяли считать атом азота в соединениях (II) совершенно «мертвым» – инертным к химическим реакциям.

Поэтому совершенно неожиданным оказался факт образования предложенных солей 1-гидроксигерматрана с окси-, или кето-, или дикарбоновыми кислотами в водной среде, очевидно, за счет разрыва внутримолекулярного донорно-акцепторного взаимодействия GeN в исходных 1-гидроксигерматранах (II, R=OH), образования свободной пары электронов у атома азота, взаимодействующей с карбонильной группой (С=О).

Убедительным доказательством образования предложенных солей 1-гидроксигерматрана (I) по атому азота также служат обнаруженные сильные смещения химических сдвигов протонов (, м.д.) атранового остова (скелета) у атома азота (CH2N)=0,41-0,42 м.д. в сторону слабого поля у предложенных солей 1-гидроксигерматрана (I) по сравнению с исходными 1-гидроксигерматранами (II, R=OH) в полярном растворителе D2O.

Сказанное выше подтверждает наличие критериев изобретения – «новизны» и «изобретательского уровня».

Технологическая реализация изобретения не представляет трудностей, весьма проста и технологична, основана на известных технологических химических процессах получения химических соединений, что отвечает выполнению критерия «промышленная применимость».

Варианты осуществления изобретения

В дальнейшем изобретение поясняется конкретными вариантами осуществления способа получения солей 1-гидроксигерматрана с окси-, или кето-, или дикарбоновыми кислотами [1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилатов формулы (I)]. Далее приводится ряд примеров из всей совокупности проведенных экспериментов.

Пример 1. Получение соли 1-гидроксигерматрана с яблочной (оксикарбоновой) кислотой формулы (I, Х=-CH2(OH)CH-) (Ia).

В трехгорлую круглодонную колбу, емкостью 500 мл, снабженную термометром, мешалкой и обратным холодильником, помещают при перемешивании 50,8 г (0,2 моль) 1-гидроксигерматрана (II, R-ОН), 34,9 г (0,26 моль) яблочной кислоты и 350 мл дистиллированной воды. Реакционную смесь перемешивают при 80°С в течение 20 минут. Далее прозрачный водный раствор помещают в одногорлую круглодонную колбу емкостью 1 л и отгоняют на роторном испарителе (60°С, 10-15 мм рт.ст.) 270-280 мл воды.

Далее маточный раствор охлаждают до комнатной температуры и вводят 160 мл спирта. Полученный раствор перемешивают на роторном испарителе при комнатной температуре в течение 30 минут и далее отгоняют азеотроп (вода-спирт) при 50°С (±0,05°С) и остаточным давлением 15-20 мм рт.ст. После образования белого сухого продукта остаточное давление понижают до 2-5 мм рт.ст. и вакуумируют дополнительно 3-4 часа. Получают 75,3 г соли 1-гидроксигерматрана с яблочной кислотой формулы (I, X=-СН2(ОН)СН-) (Ia). Выход – 97,0%.

После этого продукт измельчают и упаковывают в герметичную тару.

Данные элементного анализа полученного соединения (Ia) представлены в таблице 1.

Спектр протонного магнитного резонанса ПМР (20% раствор в D2O, стандарт СН3CN), полученный на приборе Bruker AM-360, имеет 2 характерных для герматрановой структуры триплета (, м.д.): CH2N 3,41 т; OCH2 3,89 т (см. таблицу 2).

Пример 2. Получение соли 1-гидроксигерматрана с -кетоглутаровой (кетокарбоновой) кислотой формулы (I, Х=-СН2CH2(O)С-) (Ib).

Получение проводят согласно процедуре, описанной в примере 1, только загружают 29,2 г (0,2 моль) -кетоглутаровой кислоты. Реакционную смесь перемешивают при 45°С в течение 30 минут. После сушки получают 76,0 г соли 1-гидроксигерматрана с -кетоглутаровой кислотой формулы (I, Х=-СН2СН2(O)С-) (Ib). Выход – 95,0%.

Данные элементного анализа упомянутой соли (Ib) представлены в таблице 1, а данные спектра протонного магнитного резонанса ПМР – в таблице 2.

Пример 3. Получение соли 1-гидроксигерматрана с щавелевоуксусной (кетокарбоновой) кислотой формулы (I, Х=-С(O)СН2-) (Ic).

Получение проводят согласно процедуре, описанной в примере 1, только загружают 26,4 г (0,2 моль) щавелевоуксусной кислоты, реакционную смесь перемешивают при комнатной температуре (20°С) в течение 24 часов. После сушки получают 69,5 г соли 1-гидроксигерматрана с щавелевоуксусной кислотой формулы (I, Х=-СН=СН-) (Ic). Выход – 90,0%

Данные элементного анализа упомянутой соли (Ic) представлены в таблице 1, а данные спектра протонного магнитного резонанса ПМР – в таблице 2.

Пример 4. Получение соли 1-гидроксигерматрана с янтарной (дикарбоновой) кислотой формулы (I, Х=-CH2-CH2-) (Id).

Получение проводят согласно процедуре, описанной в примере 1, только загружают 23,6 г (0,2 моль) янтарной кислоты, реакционную смесь перемешивают при 80°С в течение 30 минут. После сушки получают 44,6 г соли 1-гидроксигерматрана с янтарной кислотой формулы (I, Х=-СН2-СН2-) (Id). Выход – 60,0%.

Данные элементного анализа упомянутой соли (Id) представлены в таблице 1, а данные спектра протонного магнитного резонанса ПМР – в таблице 2.

Пример 5. Получение соли 1-гидроксигерматрана с фумаровой (дикарбоновой) кислотой формулы (I, Х=-СН=CH-) (Ie).

Получение проводят согласно процедуре, описанной в примере 1, только загружают 23,2 г (0,2 моль) фумаровой кислоты, реакционную смесь перемешивают при температуре 50°С в течение 60 минут. После сушки получают 45,1 г соли 1-гидроксигерматрана с фумаровой кислотой формулы (I, Х=-СН=СН-) (Ie). Выход – 61,0%.

Данные элементного анализа упомянутой соли (Ie) представлены в таблице 1, а данные спектра протонного магнитного резонанса ПМР – в таблице 2.

Полученные в примерах 1-5 соли 1-гидроксигерматрана (I) формул (Ia) – (Ia) представляют собой белые порошки, растворимые в воде. Они не плавятся, а при нагревании разлагаются. Неспособность предложенных солей 1-гидроксигерматрана (I) формул (Ia) – (Ia) давать стабильную жидкую фазу при нагревании и нерастворимость их в таких растворителях как хлороформ, бензол, толуол, эфир, диоксан, конечно, не характерны для простых ковалентно построенных соединений. Все это, а также повышенная чувствительность к влаге, указывает на наличие сильных электростатических сил, удерживающих молекулы в специфических положениях кристаллов и придающих соединениям (I) солеобразные свойства – «внешней ионной пары» с некоторой координацией между атомом азота и атомом углерода карбонильной группы. Данные предложенные соединения 1-гидроксигерматрана (I) получены с высокой чистотой и с выходом (60-97%).

Нами впервые предложены новые неизвестные ранее соли 1-гидроксигерматрана с окси-, кето-, дикарбоновыми кислотами (I). Получено расширение сведений о свойствах трициклических соединений, содержащих атомы германия и азота – герматранов. Следовательно, получено расширение знаний о структуре 1-гидроксигерматранов с органическими кислотами, расширение ряда классов соединений 1-гидроксигерматранов, расширение класса солей. Способ получения весьма прост, технологичен и не дорог, отсутствуют препятствия для его использования в химической промышленности.

Кроме того, нами проведены исследования по определению показателей их биологической активности и токсичности заявленных соединений (Ia-Ie) для определения возможности их реализации.

1. Определение противовирусной активности соединений (Ia-Ie)

Для исследования по определению показателей биологической активности соединений (Ia-Ie) были взяты:

– вирус гриппа А, референс-штамм, рекомендованный экспертами ВОЗ для производства диагностических и вакцинных препаратов – А/Новая Каледония/20/99 (H1N1), чувствительный к ремантадину и арбидолу, а также

– эпидемический вариант вируса гриппа В – В/Хабаровск/57/05, подобный эталону В/Шанхай/362/01, в отношении которого ранее была установлена активность противовирусного препарата арбидол.

Определение противовирусных активностей соединений 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилатов формул (Ia-Ie) было проведено по снижению экспрессии вирусных антигенов, выявляемой методом иммунноферментного анализа (ИФА) в культуре клеток MDCK при заражении клеточной культуры вирусами гриппа А и В в присутствии различных концентраций исследуемых заявленных соединений. На монослой клеток культуры тканей наносили соединения (Ia-Ie) за два часа до инфицирования. Каждое разведение вируса исследовали в 3-х повторах, для которых вычисляли среднее значение оптической плотности при длине волны 492 нм (ОП-492). Результаты изучения активности соединений (Ia-Ie) представлены в Таблице 3 – «Снижение репродукции вирусов гриппа А и В в культуре клеток MDCK при добавлении соединений (Ia-Ie) по сравнению с контролем, (%)»

Полученные результаты выявили активность соединений (Ia-Ie) в отношении вирусов гриппа. Причем наибольшее снижение активности вируса гриппа А (40,0-55,0%) было отмечено для всех соединений (Ia-Ie) при концентрации 250 мкг/мл и дальнейшее ее увеличение до 1000 мкг/мл не привело к усилению ингибирующей активности.

В то же время для вируса гриппа В отмечена более низкая активность соединений (Ia-Ie), которая при концентрации 200 мкг/мл для соединения (Ie) составила 23,0% и при 500 мкг/мл – 34,0%.

Изучено комбинированное действие соединения (Ie) и ремантадина. В Таблице 3 представлены результаты – выявлено усиление эффекта снижения репродукции вируса гриппа A (H1N1), по сравнению с таковыми, полученными в отношении каждого из них при низких концентрациях (см. Таблицу 3). Комбинация соединения (Ie) с концентрацией 100 мкг/мл и ремантадина, взятом в концентрации (0,05 мкг.мл), ингибировали репродукцию вируса гриппа А на 100%.

2. Острая токсичность

Определение острой токсичности проводили на нелинейных белых мышах-самцах массой 18-20 г при однократном внутрижелудочном (в/ж) введении в дозах 1000, 2000, 3000, 4000 и 5000 мг/кг 20% водного раствора по 0,1, 0,2, 0,3, 0,4 и 0,5 мл на 20 г массы мыши соответственно.

Проводили введение каждого из соединений 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилатов формул (Ia-Ie), в отдельности.

В течение 14 дней после введения каждого из соединений (Ia-Ie) не обнаружено признаков интоксикации, отставания прироста массы тела и гибели животных.

В интервале исследованных доз не наблюдалось какого-либо нарушения движений животных, рефлексов и поведения. Анатомические исследования не обнаружили изменений в легких, почках, селезенке и других органах.

Для мышей величина LD50 для исследованных соединений (Ia-Ie) составила более 5000 мг/кг, что позволяет отнести их к IV классу опасности в соответствии с классификацией опасности веществ по степени воздействия на организм по ГОСТу 12.1.007-76. или к V классу токсичности (практически нетоксичным веществам) по Hodge, Sterner (1943).

Приведенные примеры позволяют определить предложенные соединения – 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилаты формул (Ia-Ie) – как биологически активные вещества.

Нами получены новые биологически активные вещества, являющиеся новыми неизвестными ранее солями 1-гидроксигерматрана с окси-, кето-, дикарбоновыми кислотами (I). Получено расширение ряда биологически активных герматранов с органическими кислотами.

Промышленная применимость

Полученные новые соединения – соли 1-гидроксигерматрана с окси-, кето-, дикарбоновыми кислотами используются в промышленности, в частности в химической промышленности, а также, как показали исследования, упомянутые предложенные соли являются биологически активными веществами, могут найти применение в качестве новых средств в фармакотерапии, в медицине, медицинской, фармацевтической и пищевой промышленности, в том числе детском питании, для очистки воды, в косметологии, парфюмерии, стоматологии.

Таблица 2
Данные спектров ПМР – 1H синтезированных соединений (Ia-Ie) и исходного герматрана (II, R=OH) в D2O.
NN п/п Тип соединения X R Химические сдвиги, , в м.д.
CH2N CH2O
1 (Ia) (-CH2(OH)CH-) 3,42 т 3,88 т
2 (Ib) (-CH2CH2(O)C-) 3,41 т 3,89 т
3 (Ic) (-С(О)СН2-) 3,42 т 3,88 т
4 (Id) (-СН2-СН2-) 3,41 т 3,89 т
5 (Ie) (-СН=СН-) 3,41 т 3,89 т
6 исходное (II) ОН 3,0 т 3,77 т

Таблица 3
Снижение репродукции вирусов гриппа А и В в культуре клеток MDCK при добавлении соединений (Ia-Ie) по сравнению с контролем, (%)
Исследованные соединения (Ia-Ie) и комбинации соединения (Ie) с ремантадином Концентрации соединений (Ia-Ie), мкг/мл
1000 500 250 100 50 20 500 200 100 50 20
Показатели активности к вирусу группы А (H1N1), % Показатели активности к вирусу группы В,%
(Ia) 52,0 48,0 50,0 30,0 17,0 9,0 28,0 17,0 9,0 нет Нет
(Iв) 50,0 50,0 50,0 31,0 16,0 8,0 28,0 18,0 8,0 нет Нет
(Iс) 43,0 42,0 40,0 25,0 14,0 нет 21,0 10,0 нет нет нет
(Id) 46,0 46,0 45,0 29,0 13,0 7,0 24,0 13,0 нет нет нет
(Ie) 56,0 56,0 55, 33,0 20,0 12,0 34,0 23,0 15,0 8,0 нет
Ремантадин* (0,001 мкг/мл) с соединением (Ie) 48,0
Ремантадин** (0,05 мкг/мл) с соединением (Ie) 100,0
* – при концентрации ремантадина 0,001 мкг/мл активность его 36,0% к вирусу группы A (H1N1
** – при концентрации ремантадина 0,05 мкг/мл активность его 56,0% к вирусу группы А (Н1N1).

Формула изобретения

1. Германийорганическое соединение, представляющее собой 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилат следующей общей формулы (I):

называемый 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий малат при Х=(-СН2(ОН)СН-) (1а), иначе, соль 1-гидроксигерматрана с яблочной кислотой формулы (1а).

2. Германийорганическое соединение, представляющее собой 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилат следующей общей формулы (I):

называемый 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий -кетоглутарат при Х=(-СН2СН2(O)С-) (1b), иначе, соль 1-гидроксигерматрана с -кетоглутаровой кислотой формулы (1b).

3. Германийорганическое соединение, представляющее собой 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилат следующей общей формулы (I):

называемый 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий оксалоацетат при Х=(-С(O)СН2) (1с), иначе, соль 1-гидроксигерматрана с щавелевоуксусной кислотой формулы (1с).

4. Германийорганическое соединение, представляющее собой 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилат следующей общей формулы (I):

называемый 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий сукцинат при X=(-CH2-CH2-) (1d), иначе, соль 1-гидроксигерматрана с янтарной кислотой формулы (1d).

5. Германийорганическое соединение, представляющее собой 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий карбоксилат следующей общей формулы (I):

называемый 1-гидрокси-1-герма-2,8,9-триокса-5-азатрицикло[3.3.3]ундеканий фумарат при Х=(-СН=СН-) (1е), иначе, соль 1-гидроксигерматрана с фумаровой кислотой формулы (1е).


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 27.12.2008

Извещение опубликовано: 10.02.2010 БИ: 04/2010


NF4A – Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 10.02.2010

Извещение опубликовано: 10.02.2010 БИ: 04/2010


Categories: BD_2333000-2333999