Патент на изобретение №2333886

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2333886 (13) C2
(51) МПК

C01B13/11 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 19.10.2010 – может прекратить свое действие

(21), (22) Заявка: 2006135037/15, 03.10.2006

(24) Дата начала отсчета срока действия патента:

03.10.2006

(43) Дата публикации заявки: 10.04.2008

(46) Опубликовано: 20.09.2008

(56) Список документов, цитированных в отчете о
поиске:
DE 10008103 A1, 28.12.2000. SU 1813703 A1, 07.05.1993. SU 564258 A1, 05.07.1977. US 4519357 A, 28.05.1985. JP 56160304 A, 10.12.1981. WO 8807973 A1, 20.10.1988. WO 2005026044 A2, 24.03.2005. US 5089098 A, 18.02.1992. WO 0102291 A2, 11.01.2001.

Адрес для переписки:

607188, Нижегородская обл., г. Саров, пр-кт Мира, 37, ФГУП “РФЯЦ-ВНИИЭФ”, начальнику ОПИНТИ

(72) Автор(ы):

Дубинов Александр Евгеньевич (RU),
Макарова Нина Николаевна (RU),
Селемир Виктор Дмитриевич (RU)

(73) Патентообладатель(и):

Российская Федерация в лице Федерального агентства по атомной энергии (RU),
Федеральное государственное унитарное предприятие “Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики” – ФГУП “РФЯЦ-ВНИИЭФ” (RU)

(54) КАМЕРА БАРЬЕРНОГО РАЗРЯДА

(57) Реферат:

Изобретение относится к устройствам для получения ионизированного газа при помощи барьерного разряда. Камера содержит электроды и расположенный между ними трубчатый спиральный диэлектрический барьер, через который пропускают рабочую газовую среду. Диэлектрический барьер может быть выполнен в виде цилиндрической спирали, навитой на поверхность внутреннего цилиндрического электрода, коаксиально установленного по отношению к наружному цилиндрическому электроду, или в виде плоской спирали Архимеда, расположенной между плоскими электродами. Такое выполнение устройства позволяет существенно упростить конструкцию, уменьшить трудоемкость ее изготовления, без снижения ее производительности. 3 ил.

Изобретение относится к устройствам для получения ионизованного газа (например, озона, смеси криптон – ксенон и др.) при помощи барьерного разряда.

Ионизированный газ, полученный в заявляемом устройстве, может быть использован в так называемых озонных технологиях: очистка и подготовка питьевой воды, очистка сточных вод (бытовых и промышленных стоков), отходов газов и др. Ионизированная смесь газов используется также в металлургической, химической, плазмохимической, фармацевтической, пищевой промышленности, коммунальном хозяйстве и медицине.

Известно устройство по патенту RU №2063928 «Малогабаритный озонатор» авторов Ткачева Р.П. и Петриной Т.А., кл. МПК7 С01В 13/11, опубл. в БИ №20 от 20.07.96 г. Озонатор содержит цилиндрический корпус, выполненный из токопроводящего материала и являющийся наружным электродом, торцы которого снабжены фланцами, а внутри цилиндрического корпуса коаксиально с ним на центрирующих втулках, закрепленных на фланцах, установлена стеклянная кювета (стеклянная трубка), закрытая с одного торца и контактирующая своей внутренней поверхностью с электродом. Внутренний и наружный электроды подключены к источнику питания, а цилиндрический корпус снабжен патрубком для подачи рабочего газа, воздуха или кислорода. Диэлектрический барьер, которым является стенка стеклянной трубки, расположен с зазором по отношению к внешнему электроду. Под действием высоковольтных импульсов напряжения в межэлектродном промежутке возбуждается барьерный разряд.

В разрядных промежутках происходит нарастание напряженности электрического поля. Появление микроразрядов вызывает локальное увеличение напряженности электрического поля. Ультрафиолетовое излучение облучает рабочий объем камеры газом и поверхность электродов, инициируя развитие барьерного разряда во всем межэлектродном промежутке. В результате увеличения поверхности соприкосновения диэлектрика с электродом повышается производительность и интенсивность плазмохимических процессов. В результате прохождения рабочего газа через разрядную зону озонатора на выходе получается озон-воздушная или озон-кислородная смесь с концентрацией (10-1-10) г/м3, при этом получаемое количество озона зависит от превышения интенсивности образования над интенсивностью разложения.

Недостатком этой конструкции является неэффективность использования объема разрядной камеры, так как в микрозазорах, образованных неплотным прилеганием диэлектрика, тоже зажигается разряд, так как один из электродов выполнен в виде проводящего покрытия на поверхности. Кроме того, диэлектрический барьер находится в неоднородном тепловом поле.

Известна также камера барьерного разряда (свидетельство на полезную модель RU №32498 А.И.Карпенко «Озонатор», кл. МПК7 С25В 1/13, опубликовано в БИ №26 от 20.09.03 г.). Камера барьерного разряда здесь содержит электроды и расположенный между ними трубчатый диэлектрический барьер, через который пропускается рабочая газовая среда.

В качестве диэлектрического барьера используется плоская стеклянная кювета, которая представляет собой плоскую трубку прямоугольного сечения, на концах переходящую в трубки круглого сечения, на которые надеты трубки, подводящую газовую смесь (кислород) и выводящую ионизированную (озон) смесь. Диэлектрический барьер установлен между плоскими электродами.

Недостатком этой камеры является неустойчивость в эксплуатации. Распределение токов неоднородно в контактах диэлектрик-металл вдоль длины стеклянной трубки. Между поверхностью барьера, обращенного к разрядному промежутку и поверхностью, обращенной к электроду, существуют градиенты температур. Неоднородность в распределении токов приводит к перегреву, возможному тепловому пробою. Все эти недостатки снижают производительность и концентрацию выходной газовой смеси.

Наиболее близким к заявляемой камере барьерного разряда является камера барьерного разряда озонатора, описанного в патенте Германии DE 10008103, опубл. 28.12.2000, МПК7 Н01Т 1/13. В этой камере диэлектрический барьер выполнен в виде цилиндрической трубчатой спирали, который расположен внутри цилиндрического электрода, а другой электрод – спиральный и расположен внутри трубки барьера. Такая конструкция камеры барьерного разряда позволяет повысить производительность озонатора, в состав которого входит камера, и увеличить концентрацию озона на выходе. Недостаток устройства – сложность конструкции, которая заключается в трудоемкости установки спирального электрода внутри спирального трубчатого барьера с обеспечением необходимого зазора между ними.

Задача данного изобретения заключается в упрощении конструкции камеры барьерного разряда.

Технический результат изобретения – упрощение конструкции камеры барьерного разряда за счет изменения формы и взаимного расположения электродов и спирального диэлектрического барьера.

Указанный технический результат достигается тем, что по сравнению с известной камерой барьерного разряда, содержащей электроды и расположенный между ними трубчатый спиральный диэлектрический барьер, через который пропускается рабочая газовая среда, в предлагаемом техническом решении или оба цилиндрических электрода имеют форму цилиндров, они расположены коаксиально друг другу, а диэлектрический барьер выполнен в виде цилиндрической спирали, навитой на поверхность внутреннего электрода, или электроды выполнены плоскими, а диэлектрический барьер в виде плоской спирали Архимеда расположен между ними.

Такое конструктивное выполнение устройства позволяет существенно упростить конструкцию камеры барьерного разряда, уменьшить трудоемкость ее изготовления, без снижения ее производительности. В предложенном устройстве нет необходимости размещать один из электродов внутри изогнутого спиралью трубчатого диэлектрического барьера электрода с гарантированным зазором между ними. Эта операция в изготовлении прототипа является наиболее трудоемкой, а при изготовлении предлагаемого устройства она отсутствует.

На фиг.1 изображена заявляемая разрядная камера с цилиндрическими коаксиальными электродами.

На фиг.2 изображена заявляемая разрядная камера с плоскими электродами.

На фиг.3 изображен диэлектрический барьер в виде плоской спирали Архимеда.

Камера барьерного разряда содержит электроды 2 и 3 и расположенный между ними трубчатый диэлектрический барьер 1, через который пропускается рабочая газовая среда. Диэлектрический барьер 1 выполнен в виде спирали. Электроды 2 и 3 (фиг.1) могут быть выполнены цилиндрическими, они расположены коаксиально, а диэлектрический барьер 1 выполнен в виде цилиндрической спирали, навитой на поверхность внутреннего электрода 3. Электроды 2 и 3 (фиг.2) могут быть выполнены плоскими, а диэлектрический барьер 1 в виде плоской спирали Архимеда (фиг.3) расположен между ними.

Кроме того, заявляемое устройство содержит входную трубку 4 и выходную трубку 5. Камера запитывается от высокочастотного импульсного источника напряжения (на фиг.1-2 не показан), включающего последовательно соединенный трансформатор, выпрямитель, генератор импульсов и электронный ключ.

Устройство работает следующим образом. Входная 4 и выходная 5 трубки камеры подключаются к соответствующим магистралям подачи и выходного газа. Устанавливается поток подаваемого на ионизацию газа через трубчатый диэлектрический барьер 1. Электроды 2 и 3 разрядной камеры подключаются к генератору высокочастотных импульсов чередующейся полярности. Микроразряды производят плазму и ультрафиолетовое излучение, которое инициирует формирование барьерного разряда на фронте каждого импульса напряжения, обеспечивая тем самым эффективную и стабильную наработку ионизованного газа в широком диапазоне частот.

В примере реализации по фиг.1 коаксиальные электроды 2 и 3 были выполнены из дюралюминия. Зазор между внешним электродом и диэлектрическим барьером в виде стеклянной трубки выполнен порядка 1 мм. Трубка выполнена из термостойкого стекла с толщиной стенки 1- 1,2 мм. Контактирующий со стеклянной трубкой внутренний электрод покрыт защитой из слоя никеля или хрома толщиной 15-18 мкм. Разрядная камера представляет собой коаксиальную систему электродов с диаметром D=48 мм и D=40 мм. При этом диэлектрический барьер может прилегать к обоим электродам, касаясь их, или иметь гарантированный зазор с одним из них либо с обоими.

Таким образом, по сравнению с прототипом такое конструктивное выполнение устройства позволяет существенно упростить конструкцию камеры барьерного разряда, уменьшить трудоемкость ее изготовления, без снижения ее производительности.

Формула изобретения

Камера барьерного разряда, содержащая электроды и расположенный между ними трубчатый спиральный диэлектрический барьер, через который пропускается рабочая газовая среда, отличающаяся тем, что диэлектрический барьер выполнен в виде цилиндрической спирали, навитой на поверхность внутреннего цилиндрического электрода, коаксиально установленного по отношению к наружному цилиндрическому электроду, или в виде плоской спирали Архимеда, расположенной между плоскими электродами.

РИСУНКИ

Categories: BD_2333000-2333999