Патент на изобретение №2333189

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2333189 (13) C1
(51) МПК

C06B21/00 (2006.01)
C06D5/06 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 19.10.2010 – действует

(21), (22) Заявка: 2007100533/02, 09.01.2007

(24) Дата начала отсчета срока действия патента:

09.01.2007

(46) Опубликовано: 10.09.2008

(56) Список документов, цитированных в отчете о
поиске:
СМИРНОВ Л.А. Оборудование для производства баллиститных порохов по шнековой технологии и зарядов из них. – М.: МГАХМ, 1997, с.50-51. RU 2198864 С2, 20.02.2003. FR 2458523 A1, 02.01.1981. US 5619073 A, 08.04.1997.

Адрес для переписки:

614113, г.Пермь, ул. Чистопольская, 16, ФГУП “Научно-исследовательский институт полимерных материалов”, главному инженеру В.Е.Ковтуну

(72) Автор(ы):

Куценко Геннадий Васильевич (RU),
Ибрагимов Наиль Гумерович (RU),
Козьяков Алексей Васильевич (RU),
Журавлева Лидия Алексеевна (RU),
Печенкина Мария Александровна (RU),
Молчанов Владимир Федорович (RU),
Никитин Василий Тихонович (RU),
Пупин Николай Афанасьевич (RU),
Вшивкова Валентина Ивановна (RU),
Ибрагимов Марат Наилевич (RU),
Божья-Воля Николай Сергеевич (RU),
Федченко Николай Николаевич (RU),
Богданов Сергей Юрьевич (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “Научно-исследовательский институт полимерных материалов” (RU),
Федеральное казенное предприятие “Пермский пороховой завод” (RU)

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДА БАЛЛИСТИТНОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА

(57) Реферат:

Изобретение относится к области изготовления зарядов из баллиститного твердого ракетного топлива (БРТТ). Способ изготовления заряда из БРТТ включает операции смешения компонентов в нейтральной среде с получением топливной массы, отжима, вальцевания, сушки и формования заряда на пресс-аппарате с использованием формообразующего пресс-инструмента. После смешения компонентов производят предварительный отжим топливной массы до влажности 25…60% и протирают ее через сито с размером ячеек от 2×2 до 4×4 мм при температуре 15…35°С. Изобретение позволяет улучшить температурный градиент скорости горения БРТТ и снизить дымность продуктов сгорания БРТТ. 1 табл.

Изобретение относится к области изготовления зарядов твердого ракетного топлива, а именно к способу изготовления заряда из баллиститного ракетного твердого топлива (БРТТ) методом проходного прессования.

Баллиститные топлива в силу ряда положительных свойств, таких как высокая прочность, технологичность, монолитность, низкая стоимость и др., нашли широкое применение в тактических ракетах, например неуправляемых штурмовых авиационных ракетах, противотанковых управляемых ракетах (ПТУР), реактивного системах залпового огня (РСЗО) и ряда других.

Способы переработки БРТТ и изготовления зарядов из них приведены в источниках: Краткий энциклопедический словарь “Энергетические конденсированные системы”. /Под ред. Б.П.Жукова. М., 2000, с.428-431, Смирнов Л.А. “Оборудование для производства баллиститных порохов по шнековой технологии и зарядов из них”. М., МГАХМ, 1997, с.50-51, патент FR 2458523, US 5619073, RU 2105747, RU 2220934.

Способ по источнику Смирнов Л.А. “Оборудование для производства баллиститных порохов по шнековой технологии и зарядов из них”. М., МГАХМ, 1997, с.50-51 принят авторами за прототип.

Способ-прототип обеспечивает вышеуказанные достоинства БРТТ. Однако в отдельных случаях наблюдается повышенная дымность и повышенный температурный градиент скорости горения (т) – коэффициент, характеризующий разброс скорости горения БРТТ в зависимости от начальной температуры БРТТ, обусловленные особенностями переработки БРТТ.

Известный технологический процесс изготовления зарядов из БРТТ включает изготовление (смешение) топливной массы в нейтральной среде с последующей ее переработкой на фазах отжима, вальцевания, сушки и формования зарядов на пресс-аппаратах с использованием формообразующего пресс-инструмента. При этом в силу многокомпонентности баллиститного топлива и неоднородности исходного сырья, особенно нитроцеллюлозы (НЦ), не всегда достигается однородность распределения компонентов на фазе изготовления (смешения) топливной массы и гомогенность топливной композиции в целом, что оказывает отрицательное влияние на уровень и воспроизводимость баллистических характеристик.

Технической задачей патентуемого изобретения является разработка способа изготовления зарядов из баллиститного твердого ракетного топлива, обеспечивающего улучшенные внутрибаллистические характеристики (т) и пониженное дымообразование БРТТ.

Технический результат изобретения достигается за счет изготовления зарядов из БРТТ методом смешения компонентов топлива в нейтральной среде с последующей переработкой топливной массы на фазах отжима, вальцевания, сушки и формования заряда на пресс-аппаратах с использованием формообразующего пресс-инструмента, при этом топливную массу после предварительного отжима до влажности 25…60% подвергают усреднению методом протирания через сито с размером ячейки от 2×2 до 4×4 мм при температуре 15…35°С.

Дальнейшую переработку топливной массы осуществляют известным способом.

Сущность изобретения заключается во введении в техпроцесс изготовления зарядов из БРТТ дополнительной операции протирания (предварительно отжатой) топливной массы через сито с размером ячейки от 2×2 до 4×4 мм.

Известно, что существующий метод изготовления топливной массы не всегда обеспечивает требуемый уровень ее однородности (гомогенности). Это обусловлено как неоднородностью используемой нитроцеллюлозы (которая, как известно, полидисперсна по плотности, степени полимеризации и характеру измельчения), так и неравномерностью распределения основного растворителя – нитроглицерина (НГЦ) в НЦ. При введении в суспензию НЦ нитроглицерина в силу быстрого набухания поверхностных слоев волокон НЦ образуются довольно плотные агломераты, которые обуславливают неоднородность топливной массы как по распределению концентрации НГЦ в НЦ, так и фракционному составу топлива в целом.

Для обеспечения однородности топлива по патентуемому способу изготовленную топливную массу после предварительного отжима до влажности 25…60% подвергают операции протирания через сито с размером ячеек от 2×2 до 4×4 мм, которая способствует получению равномерного фракционного состава массы и повышению интенсивности и равномерности перераспределения концентрации НГЦ в НЦ за счет механического перемешивания. Далее топливную массу подвергают отжиму до влажности, обеспечивающей безопасность переработки на основных фазах технологического процесса изготовления зарядов из БРГТ – вальцевания, сушки и формования зарядов требуемой геометрической формы. Размер ячейки сита, равный 2×2…4×4 мм, является оптимальным, так как при использовании сита с ячейкой менее 2×2 мм резко уменьшается проходимость массы через сито (происходит «залипание» топливной массы) и возрастает трудоемкость этой операции, а при размере ячеек более 4×4 мм – не достигается требуемая степень однородности (гомогенизации) топливной массы по фракционному составу. Используемый температурный интервал (15…35°С) проведения операции протирания топливной массы обеспечивает сохранение необходимого уровня влагосодержания массы для обеспечения безопасности технологического процесса изготовления топлива в целом.

Примеры реализации способа.

Пример №1. Топливную массу высокоэнергетического баллиститного малодымного топлива, прошедшую в заводских условиях фазу смешения компонентов и отжатую на центрифуге до 25% влажности, подвергали усреднению методом протирания через сито с размером ячейки 2×2 мм при Т=15°С, далее топливную массу перерабатывали на фазах отжима, вальцевания, сушки и формования в заряды для ПТУР. Для зарядов проведена оценка температурного коэффициента скорости горения и удельной мощности дымообразования на специальном стенде (патент RU 2233991). Результаты оценки приведены в таблице.

Пример №2. Топливную массу высокоэнергетического баллиститного топлива изготавливали и перерабатывали в заводских условиях в заряды для ПТУР аналогично примеру №1, но с проведением операции усреднения методом протирания с использованием сита 4,0×4,0 мм при Т=35°С и влажности массы после отжима на центрифуге, равной 60%.

Пример №3. Топливную массу, изготовленную в лабораторных условиях, перерабатывали аналогично примеру №1 с проведением операции усреднения на сите с размером ячеек 3,0×3,0 мм с влажностью 42% при Т=20°С. Из топливного образца изготавливали топливные элементы для определения скорости горения в приборе постоянного давления при температурах ±50°С. Полученные результаты использовали для расчета температурного коэффициента скорости горения топлива (т).

Пример №4. Топливную массу изготавливали и перерабатывали в заводских условиях в заряды для ПТУР из высокоэнергетического баллиститного топлива аналогично примеру №1, но без операции протирания (по способу-прототипу).

Как видно из данных таблицы, заряды БРТТ, изготовленные по патентуемому способу, характеризуются пониженной (на 20…25%) величиной температурного коэффициента скорости горения топлива и уменьшенной (в 1,5…2,0 раза) дымностью продуктов сгорания по сравнению со способом-прототипом.

Таблица
Характеристики БРТТ
Пример Характеристики
температурный коэффициент скорости горения. т, в области температур ±50°С и давлений 40…200 кгс/см2, 1/град удельная мощность дымообразования, n*, м2/кг
Пример №1 0,11 2,8
Пример №2 0,12 3,3
Пример №3 0,11
Пример №4 0,15 5,6
– удельная мощность дымообразования твердого ракетного топлива (оценка зависимости N() выполнена в соответствии с пат. RU 2233991), где N – мощность дымообразования, м2/с;
– время, с;
m – масса твердого ракетного топлива заряда, кг.

Формула изобретения

Способ изготовления заряда из баллиститного твердого ракетного топлива, включающий операции смешения компонентов баллиститного твердого ракетного топлива в нейтральной среде с получением топливной массы, отжима, вальцевания, сушки и формования заряда на пресс-аппарате с использованием формообразующего пресс-инструмента, отличающийся тем, что после смешения компонентов производят предварительный отжим топливной массы до влажности 25…60% и протирают ее через сито с размером ячеек от 2×2 до 4×4 мм при температуре 15…35°С.

Categories: BD_2333000-2333999