Патент на изобретение №2333152
|
||||||||||||||||||||||||||
(54) СПОСОБ ОЧИСТКИ ГРАФИТОВЫХ ИЗДЕЛИЙ
(57) Реферат:
Изобретение относится к химической промышленности. Графитовые изделия нагревают сначала до 2000°С, прекращают откачку и в зону, где они находятся, вводят пары четыреххлористого углерода класса ОСЧ до давления 50 Торр. Выдерживают 30 мин, откачивают реакционные продукты через азотную ловушку. Затем повышают температуру до 2100°С, прекращают откачку. Вводят хладон-12 до давления 30 Торр, выдерживают 30 мин и снова откачивают реакционные продукты через азотную ловушку. Затем осуществляют изотермическую выдержку при 2100°С в вакууме 2 часа, охлаждают изделия. Перед извлечением изделий вводят инертный газ. Изобретение позволяет повысить степень очистки изделий, снизить удельный расход галогенсодержащих газов, удельный расход электроэнергии и увеличить срок службы технологической оснастки.
Изобретение относится к области химии, а более конкретно к технологии глубокой очистки углеграфитовых изделий и материалов от содержащихся в них примесей. Известен способ очистки графита, включающий нагрев изделий в вакууме до температуры 2300°С, проток хладона-12 с добавкой аргона при атмосферном давлении и охлаждение в вакууме или среде инертного газа [Авдеенко М.А., Ларионов В.В. Технология очистки графита до высокой степени чистоты. Цветные металлы, 1973, №2, с.48-50]. При реализации способа удается получать изделия класса ОСЧ 7-4. Недостатком способа является значительное содержание остаточных примесей в очищенных изделиях. В настоящее время промышленность нуждается в графитовых изделиях класса ОСЧ 8-5. Другим недостатком известного способа является расходование значительных объемов хладона-12, что может приводить к образованию озоновых дыр в верхних слоях атмосферы. Это связано с тем, что при проведении термохимической очистки в протоке реагентов при атмосферном давлении образовавшиеся летучие хлориды и фториды примесей выводятся из зоны очистки газовым потоком, для чего необходимо расходовать много газа. Еще одним недостатком способа является использование относительно высокой температуры, что приводит к повышенному расходу электроэнергии и износу нагревателей. Вышеприведенный способ наиболее близок по своей технической сущности к заявляемому способу, поэтому выбран в качестве прототипа. Технический результат, полученный при осуществлении настоящего изобретения, выражается в возможности повышения химической чистоты графитовых изделий, снижения удельного расхода галогеносодержащих газов, увеличения срока службы технологической оснастки и снижения расхода электроэнергии. Для достижения названного технического результата в предлагаемом способе очистки графитовых изделий, включающем их нагрев, подачу хладона-12 и их охлаждение в вакууме, отличающийся тем, что нагрев сначала ведут до 2000°С, затем прекращают откачку и в зону, где находятся графитовые изделия, вводят пары четыреххлористого углерода класса ОСЧ до давления 50 Торр, далее после выдержки в течение 30 минут откачивают реакционные продукты через азотную ловушку, повышают температуру до 2100°С, прекращают откачку и вводят хладон-12 до давления 30 Торр в зону, где находятся графитовые изделия, выдерживают в течение 30 минут, после чего снова откачивают реакционные продукты через азотную ловушку, затем осуществляют изотермическую выдержку при 2100°С в вакууме в течение 2 часов, а после охлаждения в вакууме перед извлечением изделий вводят инертный газ. Отличительными признаками предлагаемого способа от способа-прототипа являются: проведение процесса очистки графитовых изделий при низком давлении и эвакуация реакционных продуктов в азотную ловушку. При этом многократно снижается удельный расход галогеносодержащих газов, что улучшает экологическую безопасность технологии. Образовавшиеся летучие хлориды и фториды содержащихся в графите примесей конденсируются в жидкую, либо твердую фазу в объеме азотной ловушки. Далее, после размораживания ловушки реакционные продукты легко и экологически безопасно нейтрализуются щелочью. Использование паров четыреххлористого углерода класса ОСЧ позволяет при относительно низкой температуре очистить графит от большинства примесей, за исключением бора и кремния. Дальнейшее повышение температуры и ввод хладона-12 позволяют перевести бор и кремний в их летучие фториды и эвакуировать их в азотную ловушку. Благодаря наличию этих признаков возможно получение изделий из графита класса ОСЧ 8-5. При этом удельный расход хладона-12 намного ниже, чем при использовании известного способа. Несколько снижаются и затраты электроэнергии. Использование паров четыреххлористого углерода на первой стадии очистки позволяет одновременно с очисткой проводить пиролитическое уплотнение нагревателя, что компенсирует потери его массы от испарения в вакууме. Большая часть хлоридов удаляется при низком давлении при температуре 2000°С. Длительность цикла свыше 30 минут нецелесообразна, так как введенный и не прореагировавший хлор активно участвует в процессах газового травления элементов теплоизоляции. Пример. Проводили очистку графитовых электродов диаметром 6 мм и длиной 200 мм. В вакуумную камеру с прогреваемым объемом 50 л в двух графитовых контейнерах загрузили 4300 электродов, размещенных вертикально. После откачки камеры до давления 6×10-2 Торр включили нагрев и достигли температуры 2000°С. Контроль температуры проводили с помощью оптического пирометра. Затем перекрыли вентиль системы откачки. Далее в зону контейнеров ввели пары четыреххлористого углерода класса ОСЧ из барботера, термостатированного при 20°С, до достижения рабочего давления в камере 50 Торр. По истечении 30 минут открыли вентиль, соединяющий камеру с вакуумированной азотной ловушкой, для эвакуации реакционных продуктов. После их конденсации камеру вновь откачали, увеличили температуру до 2100°С, перекрыли вентиль системы откачки и ввели в рабочий объем хладон-12 из баллона до давления 30 Торр. Длительность цикла фторирования также составила 30 минут. Затем открыли вентиль, соединяющий камеру с вакуумированной азотной ловушкой, для улавливания реакционных продуктов. После их конденсации камеру вновь откачали и провели изотермическую выдержку в течение 2 часов. Затем в течение 1 часа плавно снизили ток нагрева и выключили нагрев. Провели размораживание азотной ловушки с одновременной утилизацией продуктов реакции путем барботажа через емкость с тиосульфатом натрия. После пассивного охлаждения печи в течение 20 часов в вакууме в вакуумную камеру напустили инертный газ, вскрыли камеру и провели отбор электродов для количественного атомно-эмиссионного спектрального анализа. Ниже приведены результаты анализа (в мас.%): Al – 1.1×10-6; В – 1.5×10-6; Cu – 1.6×10-6; Fe – 3×10-6; Mg – 3×10-6; Mn – 4×10-6; Si – 3×10-6; Ti – 3×10-6; Са – 3×10-6.
Формула изобретения
Способ очистки графитовых изделий, включающий их нагрев, подачу хладона-12 и их охлаждение в вакууме, отличающийся тем, что нагрев сначала ведут до температуры 2000°С, затем прекращают откачку и в зону, где находятся графитовые изделия, вводят пары четыреххлористого углерода класса ОСЧ до давления 50 Торр, далее после выдержки в течение 30 мин откачивают реакционные продукты через азотную ловушку, повышают температуру до 2100°С, прекращают откачку и вводят хладон-12 до давления 30 Торр, в зону, где находятся графитовые изделия, выдерживают в течение 30 мин, после чего снова откачивают реакционные продукты через азотную ловушку, затем осуществляют изотермическую выдержку при 2100°С в вакууме в течение 2 ч, а после охлаждения в вакууме перед извлечением изделий вводят инертный газ.
|
||||||||||||||||||||||||||