Патент на изобретение №2333149

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2333149 (13) C2
(51) МПК

C01B3/02 (2006.01)
B01J7/00 (2006.01)
C21D1/76 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 19.10.2010 – действует

(21), (22) Заявка: 2006100156/15, 10.01.2006

(24) Дата начала отсчета срока действия патента:

10.01.2006

(43) Дата публикации заявки: 27.07.2007

(46) Опубликовано: 10.09.2008

(56) Список документов, цитированных в отчете о
поиске:
SU 1604457 А1, 11.07.1990. RU 2004136579 А, 10.08.2005. RU 2201280 С2, 27.03.2003. RU 2178765 С1, 27.01.2002. US 3421859 А, 14.01.1969. JP 7033403 A, 03.02.1995. US 4219528 А, 26.08.1980. Н.В.КЕЛЬЦЕВ, Основы адсорбционной техники. – М.: Химия, 1984, 374-376.

Адрес для переписки:

410041, г.Саратов, Московское ш., 2, ОАО “Саратовский институт стекла”, отдел научно-технической информации

(72) Автор(ы):

Брызгалин Виктор Никитич (RU),
Жималов Александр Борисович (RU),
Безлюдная Валентина Сергеевна (RU)

(73) Патентообладатель(и):

Открытое акционерное общество “Саратовский институт стекла” (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ГАЗОЗАЩИТНОЙ АТМОСФЕРЫ

(57) Реферат:

Изобретения относятся к производству технологических газов и могут быть использованы для получения газозащитных атмосфер, содержащих азот с водородом или азот с водородом и оксидом углерода, применяемых в стекольной, металлургической, машиностроительной промышленности. Первый вариант получения газозащитной атмосферы включает конверсию углеводородного газа, паровую конверсию оксида углерода, охлаждение продуктов конверсии с отделением капельной влаги и окончательную очистку газовой смеси от диоксида углерода и влаги на адсорбционных установках. Конверсию углеводородного газа осуществляют в три этапа: первый этап осуществляют в свободном объеме аппарата для окисления углеводородного газа воздухом; второй этап осуществляют в объеме аппарата, заполненном зернистым огнеупорным материалом для протекания паровой и углекислотной конверсии оставшегося углеводородного газа; третий этап осуществляют в объеме аппарата, заполненном жаропрочными металлическими кольцами для насыщения газового потока влагой и протекания паровой конверсии оксида углерода. Второй вариант получения газозащитной атмосферы включает конверсию углеводородного газа, паровую конверсию оксида углерода, охлаждение продуктов конверсии с отделением капельной влаги и окончательную очистку газовой смеси от диоксида углерода и влаги на адсорбционных установках. При этом регулируют каталитическую конверсию оксида углерода количеством конденсата паров воды, подаваемого в объем аппарата, заполненного жаропрочными металлическими кольцами для насыщения газового потока влагой. Третий вариант получения газозащитной атмосферы включает конверсию углеводородного газа, паровую конверсию оксида углерода, охлаждение продуктов конверсии с отделением капельной влаги и окончательную очистку газовой смеси от диоксида углерода и влаги на адсорбционных установках. При этом часть продуктов конверсии углеводородного газа пропускают, минуя аппарат паровой конверсии оксида углерода, в аппарат охлаждения и далее в блок адсорбционной очистки для поддержания в газозащитной атмосфере заданного содержания оксида углерода. Изобретения позволяют интенсифицировать процесс, получать газозащитную атмосферу тройного состава. 3 н. и 1 з.п. ф-лы.

1. Область техники

Настоящее изобретение относится к производству технологических газов и может быть использовано для получения газовых смесей, содержащих азот с водородом или азот с водородом и оксидом углерода, применяемых в качестве защитной атмосферы в стекольной, металлургической, машиностроительной и других отраслях промышленности.

2. Уровень техники

Известны способы получения газозащитных атмосфер путем конверсии углеводородных газов в зернистом слое огнеупорного материала с последующей очисткой продуктов реакции от оксидов углерода и паров воды, а также установки для их производства (патенты РФ №1353725, МКИ С01В 3/24; №2199485, МКИ С01В 3/36; №2178765, МКИ С03В 18/12, С03В 3/24; №2181102, МПК7 С01В 3/24; а.с. SU №1665574 МКИ С03В 01 D 52/02; а.с. SU №1380764 МКИ С03В 01 D 53/02; а.с. SU №1604457 A1 В01J 7/00).

Ближайшими аналогами предлагаемого изобретения по сущности и достигаемому результату являются: способ получения контролируемой атмосферы по патенту РФ №1353725, МКИ С01В 3/24;

установка для приготовления азото-водородной контролируемой атмосферы по патенту РФ №2181102, МПК7 С01В 3/24.

Согласно патенту №1353725 способ получения азото-водородной смеси включает конверсию углеводородных газов в зернистом слое огнеупорного материала и последующую очистку продуктов реакции от оксидов углерода и паров воды. Конверсию осуществляют при температуре 1400…1700°С в двух слоях зернистого огнеупорного материала с удельной поверхностью 250…350 м23 и 50…150 м23 в количестве 80…60% и 20…40% соответственно, причем материал с большей удельной поверхностью засыпают в лобовую часть аппарата конверсии. Подготовленная газовоздушная смесь направляется непосредственно в слой зернистого огнеупорного материала.

Недостатками данного способа являются:

лобовой слой зернистого огнеупора в аппарате конверсии постоянно охлаждается поступающей газовоздушной смесью. Вследствие этого процесс конверсии в лобовом слое не идет, так как для него требуется высокая температура. Процесс конверсии начинается дальше, в слое зернистого огнеупора. Следовательно, теряется полезный объем аппарата и, кроме того, газовые потоки по поперечному сечению и высоте реактора распределяются неравномерно, соответственно, неравномерно распределяются температуры и концентрации газовых компонентов. Поэтому скорости реакций конверсии природного газа протекают так же неравномерно по сечению реактора: вблизи оси, где более высокая температура, реакции конверсии идут более интенсивно, на периферии – менее интенсивно. Следовательно, для полного завершения конверсии в потоке газа, движущегося по периферии реактора, требуется больше времени, чем для газа, движущегося по оси. Приходится настраивать процесс, ориентируясь на более медленные реакции, проходящие на периферии реактора. В результате снижается производительность конверсионной установки.

Установка по патенту РФ №2181102, где предлагается футеровку верхней части аппарата конверсии под крышкой выполнить на верхнем слое зернистого огнеупора, также имеет существенные недостатки:

во-первых, увеличение охлаждения верхней части аппарата конверсии углеводорода приводит к снижению температуры продуктов конверсии, а следовательно, к снижению скорости конверсии углеводородов, во вторых, футеровка выполняется не на крышке аппарата конверсии, а на лобовом слое зернистого огнеупора. Вследствие этого зернистый слой постоянно находится под прессом футеровки, уплотняется, создавая дополнительное сопротивление потоку, что приводит к снижению производительности аппарата конверсии.

Кроме того, недостатком перечисленных способов является то, что они не дают решений по получению защитной атмосферы тройного состава азот-водород-оксид углерода и повышению производительности на промежуточных стадиях процесса.

Задачей предлагаемого изобретения является: интенсификация процесса конверсии углеводородного газа в лобовом слое зернистого огнеупора, выравнивание температур и газовых потоков по поперечному сечению и высоте реактора в аппарате конверсии углеводородного газа, регулирование каталитической конверсии оксида углерода, а также получение газозащитной атмосферы тройного состава.

3. Раскрытие изобретения.

Предлагаемый способ конверсии углеводородного газа осуществляют в три этапа. Первый этап осуществляют в свободном объеме аппарата для окисления углеводородного газа воздухом, второй этап осуществляют в объеме аппарата, заполненном зернистым огнеупорным материалом, для протекания паровой и углекислотной конверсии оставшегося углеводородного газа, третий этап осуществляют в объеме аппарата, заполненном жаропрочными металлическими кольцами, куда подают конденсат паров воды для насыщения газового потока влагой и протекания паровой конверсии оксида углерода. При этом соотношение свободного объема аппарата к объему, заполненному огнеупорным материалом, и к объему, заполненному жаропрочными металлическими кольцами, составляет (5-15):(70-90):(5-15). Такое соотношение объемов способствует наиболее интенсивному и равномерному протеканию реакций первого и второго этапов.

На первом этапе подготовленную газовую смесь, содержащую углеводородный газ и сжатый воздух, подают в свободный объем аппарата конверсии, где осуществляют высокоскоростную реакцию воздушной конверсии углеводородного газа с большим выделением тепла и образованием диоксида углерода и паров воды согласно уравнению

СН4+2О2=CO2+2Н2О.

При этом температура лобового слоя зернистого огнеупора достигает 1600-1700°С.

На втором этапе газовый поток, содержащий продукты реакций первой стадии, направляется далее в объем аппарата, заполненный зернистым огнеупорным материалом, для осуществления паровой и углекислотной конверсии оставшегося углеводородного газа согласно уравнениям

СН42О=СО+3Н2,

CH4+СО2=2СО+2Н2.

Так как реакции конверсии эндотермичны, идет снижение температуры газового потока до 600-800°С.

На третьем этапе газовый поток направляют в объем аппарата, заполненный металлическими кольцами. Одновременно в этот объем подают конденсат паров воды для насыщения газового потока влагой и протекания паровой конверсии оксида углерода, согласно уравнению

СО+Н2O=СО22.

Подача конденсата, кроме того, обеспечивает снижение температуры газового потока до температуры 180-220°С, необходимой для окончательной каталитической очистки газовой смеси от оксида улерода в аппарате паровой конверсии.

Итак, газовоздушную смесь подают в свободный объем аппарата воздушной конверсии, где осуществляют воздушную конверсию углеводородного газа, сопровождающуюся большим выделением тепла. Температура в свободном объеме достигает 1600-1700°С и продукты реакции равномерно распределяются по поперечному сечению аппарата.

Наличие свободного незаполненного объема позволяет более полно осуществлять воздушную конверсию углеводородного газа, создавать равномерную концентрацию продуктов конверсии в газовой смеси и далее равномерно заполнять объемы между огнеупорной крошкой и равномерно распределять газовые потоки по сечению аппарата.

Далее продукты реакций первой стадии процесса направляют в объем аппарата, заполненный зернистым огнеупорным материалом. При этом они поступают в слой зернистого материала не узкой струей, как в рассмотренном выше аналоге, а широким равномерным потоком по всему поперечному сечению аппарата и имеют равномерное распределение температур и концентраций по поперечному сечению. Таким образом обеспечивается равномерное продвижение газовой смеси по объему аппарата, заполненному зернистым огнеупорным материалом, и равномерное протекание химических реакций. Поскольку газ продвигается через слой зернистого материала равномерно и реакции протекают также равномерно, полное завершение конверсии газа, движущегося по периферии аппарата, и для газа, движущегося по оси аппарата, наступает приблизительно одновременно, что способствует повышению производительности установки.

Кроме того, поскольку в предлагаемом нами варианте зернистый огнеупорный материал заполняет не весь объем аппарата, а только его часть, это обеспечивает снижение общего сопротивления продвижению газового потока в реакторе и также способствует повышению производительности установки.

После завершения второго этапа конверсии углеводородного газа газовую смесь направляют в объем аппарата, заполненного кольцами из жаропрочной стали, где начинают процесс паровой конверсии оксида углерода, подавая в этот объем конденсат паров воды. Затем газовую смесь подают в аппарат каталитической конверсии, где завершают очистку газовой смеси от оксида углерода. Интенсивность протекания каталитической конверсии оксида углерода регулируют количеством подаваемого конденсата паров воды в объем аппарата, заполненного жаропрочными металлическими кольцами, тем самым интенсифицируя процесс каталитической конверсии на стадии насыщения газового потока влагой. Кроме того, при подаче конденсата паров воды в объем аппарата, заполненного жаропрочными металлическими кольцами, происходит снижение температуры газового потока с 600-800°С до 180-220°С, являющейся рабочей температурой катализатора, что так же повышает производительность аппарата каталитической конверсии.

Газовую смесь после каталитической конверсии охлаждают с отделением капельной влаги до остаточной концентрации 10 г/м3. Далее газовую смесь подают в блок адсорбционной очистки от диоксида углерода и влаги.

Если потребителю требуется защитная атмосфера тройного состава: азот-водород-оксид углерода, то заданное содержание оксида углерода поддерживают пропусканием части продуктов конверсии, минуя аппарат паровой конверсии оксида углерода, в аппарат охлаждения и далее в блок адсорбционной очистки.

Таким образом, совокупность существенных признаков, включающая 3-этапную конверсию углеводородного газа, каталитическую конверсию оксида углерода, регулируемую предварительной подачей конденсата паров воды, пропускание части продуктов конверсии, минуя стадию окончательной очистки от оксида углерода, обуславливает достижение ожидаемого технического результата – повышение производительности установки и получение газозащитной атмосферы тройного состава.

5. Осуществление изобретения.

Предлагаемым способом выработана защитная атмосфера и применена для выработки флоат-стекла на линии ЭПКС-4000.

Ниже приведены примеры получения защитной атмосферы с использованием предлагаемого изобретения.

Пример 1.

Углеводородный газ и сжатый воздух подавали в смеситель, из которого однородную смесь через конический диффузор направляли в свободный объем аппарата конверсии, составляющий 8% общего объема аппарата, где осуществляли первый этап конверсии с образованием диоксида углерода и влаги. Температура в свободном объеме аппарата достигала 1650°С.

Далее газовую смесь подавали в слой зернистого огнеупорного материала, занимающего 80% объема аппарата, где осуществляли второй этап конверсии.

Затем газовую смесь направляли в объем аппарата, заполненного жаропрочными кольцами, который составлял 12% объема всего аппарата. Одновременно в этом объеме производили насыщение газовой смеси влагой.

Далее насыщенную влагой и охлажденную до температуры 200°С газовую смесь подавали в аппарат паровой конверсии, заполненный катализатором.

Газовую смесь после паровой конверсии охлаждали последовательно: в аппарате воздушного охлаждения с 200 до 60°С, в первом водяном холодильнике с 60 до 28°С, во втором водяном холодильнике с 28 до 10°С. После каждого охлаждения газовой смеси удаляли конденсат паров воды.

Охлажденную до 10°С газовую смесь подавали в блок адсорбционной очистки от диоксида углерода и влаги. В качестве адсорбента использовался цеолит.

Полученная защитная атмосфера имела состав: Н2 – 6 об.%, N2 – 93,9968 об.%, с остаточными примесями СО 0,002 об.%, СО2 – 0,001 об.%, Н2O – 0,0002 об.%.

Пример 2.

Углеводородный газ и сжатый воздух подавали в смеситель, из которого однородную смесь через конический диффузор направляли в аппарат воздушной конверсии углеводородного газа, который технологически и конструктивно может быть решен различно, а в данном случае выполнен в соответствии с п.1 формулы предлагаемого изобретения – имеющий свободный объем, объем, заполненный огнеупорной крошкой, и объем, заполненный металлическими кольцами. Температура в свободном объеме аппарата достигала 1650°С.

Далее газовую смесь подавали в слой зернистого огнеупорного материала, где осуществляли второй этап конверсии.

Затем газовую смесь направляли в объем аппарата, заполненного жаропрочными металлическими кольцами. Одновременно в этот объем подавали конденсат паров воды для насыщения газовой смеси влагой и прохождения паровой конверсии оксида углерода и снижения температуры газового потока. На данном этапе осуществляли регулирование количества подаваемого конденсата паров воды, изменяющее содержание оксида углерода в газовой смеси. Это позволяло влиять на последующую каталитическую конверсию оксида углерода. Повышение количества подаваемого конденсата паров воды с 200 до 400 литров в час снизило содержание оксида углерода в газовой смеси, что позволило снизить нагрузку на аппарат каталитической очистки при окончательной очистке и получить более низкую остаточную концентрацию оксида углерода в готовой смеси.

Газовую смесь после паровой конверсии охлаждали последовательно: в аппарате воздушного охлаждения со 180 до 60°С, в первом водяном холодильнике с 60 до 28°С, во втором водяном холодильнике с 28 до 10°С. После каждого охлаждения газовой смеси удаляли конденсат паров воды.

Охлажденную до 10°С газовую смесь подавали в блок адсорбционной очистки от диоксида углерода и влаги. В качестве адсорбента использовался цеолит.

Полученная защитная атмосфера имела состав: Н2 – 6 об.%, N2 – 93,9978 об.%, с остаточными примесями СО 0,001 об.%, СО2 0,001 об.%, Н2O – 0,0002 об.%.

Пример 3.

Для получения газозащитной атмосферы тройного состава свободный объем углеводородный газ и сжатый воздух подавали в смеситель, из которого однородную смесь через конический диффузор направляли в аппарат воздушной конверсии, где осуществляли воздушную конверсию углеводородного газа.

Паровую конверсию осуществляли в объеме аппарата, заполненном металлическими кольцами, куда подавали конденсат паров воды.

Далее часть продуктов конверсии в количестве 100 куб.м/ч, минуя аппарат паровой конверсии оксида углерода, охлаждали и подавали в блок адсорбционной очистки.

Полученная газозащитная атмосфера имела состав: H2 – 2 об.%, N2 – 95,9988 об.%, СО2 об.%, с остаточными примесями CO2 – 0,001 об.%, Н2О – 0,0002 об.%.

Формула изобретения

1. Способ получения газозащитной атмосферы, включающий конверсию углеводородного газа, паровую конверсию оксида углерода, охлаждение продуктов конверсии с отделением капельной влаги и окончательную очистку газовой смеси от диоксида углерода и влаги на адсорбционных установках, отличающийся тем, что конверсию углеводородного газа осуществляют в три этапа: первый этап осуществляют в свободном объеме аппарата для окисления углеводородного газа воздухом; второй этап осуществляют в объеме аппарата, заполненном зернистым огнеупорным материалом для протекания паровой и углекислотной конверсии оставшегося углеводородного газа; третий этап осуществляют в объеме аппарата, заполненном жаропрочными металлическими кольцами для насыщения газового потока влагой и протекания паровой конверсии оксида углерода.

2. Способ по п.1, отличающийся тем, что соотношение свободного объема аппарата к объему, заполненному зернистым огнеупорным материалом, и к объему, заполненному жаропрочными металлическими кольцами, составляет (5-15):(70-90):(5-15).

3. Способ получения газозащитной атмосферы, включающий конверсию углеводородного газа, паровую конверсию оксида углерода, охлаждение продуктов конверсии с отделением капельной влаги и окончательную очистку газовой смеси от диоксида углерода и влаги на адсорбционных установках, отличающийся тем, что каталитическую конверсию оксида углерода регулируют количеством конденсата паров воды, подаваемого в объем аппарата, заполненного жаропрочными металлическими кольцами для насыщения газового потока влагой.

4. Способ получения газозащитной атмосферы, включающий конверсию углеводородного газа, паровую конверсию оксида углерода, охлаждение продуктов конверсии с отделением капельной влаги и окончательную очистку газовой смеси от диоксида углерода и влаги на адсорбционных установках, отличающийся тем, что часть продуктов конверсии углеводородного газа пропускают, минуя аппарат паровой конверсии оксида углерода, в аппарат охлаждения и далее в блок адсорбционной очистки для поддержания в газозащитной атмосфере заданного содержания оксида углерода.

Categories: BD_2333000-2333999