Патент на изобретение №2330864

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2330864 (13) C1
(51) МПК

C08L33/20 (2006.01)
C08K3/08 (2006.01)

C08K3/00 (2006.01)
B82B3/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 19.10.2010 – действует

(21), (22) Заявка: 2007107345/04, 28.02.2007

(24) Дата начала отсчета срока действия патента:

28.02.2007

(46) Опубликовано: 10.08.2008

(56) Список документов, цитированных в отчете о
поиске:
RU 2259871 С2, 10.09.2005. SU 212872 А, 29.11.1968. US 6812268 В2, 02.11.2004. RU 2088328 C1, 27.08.1997. US 5912069 A, 15.06.1999.

Адрес для переписки:

119049, Москва, ГСП-1, В-49, Ленинский пр-кт, 4, МИСиС, отдел защиты интеллектуальной собственности, проректору МИСиС по науке и инновациям А.А.Аксенову

(72) Автор(ы):

Кожитов Лев Васильевич (RU),
Карпухин Всеволод Валерьевич (RU),
Козлов Владимир Валентинович (RU),
Карпачева Галина Петровна (RU)

(73) Патентообладатель(и):

Федеральное государственное образовательное учреждение высшего профессионального образования “Государственный технологический университет “Московский институт стали и сплавов” (МИСиС) (RU),
Институт нефтехимического синтеза им. А.В.Топчиева Российской академии наук (ИНХС) (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТАБИЛЬНОГО НАНОКОМПОЗИТА Cu/ПОЛИАКРИЛОНИТРИЛ

(57) Реферат:

Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН). Описан способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl2, HNO3HNO3=37%) и ПАН (М=1×105), выдерживание до растворения CuCl2 и ПАН в HNO3, выпаривание HNO3, нагревание полученного твердого вещества, причем осуществляют приготовление смеси CuCl2, HNO3 и ПАН в отношении (1÷6):(15÷600):(1,6÷15) (весовые части) при условии mCuCl2/mПАН<0,7; выдерживание в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3; выпаривание HNO3 при 90°С; термообрабатывание полученного твердого вещества при давлении и температуре 10-3÷760 мм рт.ст. и 200÷300°С соответственно, в течение 1÷40 минут с образованием термостабильного нанокомпозита Cu/ПАН, содержащего наночастицы Cu с размером от 10 до 80 нм. Техническим результатом является получение термостабильных нанокомпозитов Cu/ПАН при отжиге смеси CuCl2/ПАН, содержащих наночастицы Cu с размером от 10 до 80 нм. 1 табл., 3 ил.

Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН).

Для получения композитов, содержащих наночастицы Cu, используют полимеры в качестве матрицы, которая препятствует агломерации наночастиц [T.W.Schneider, R.C.White. Methods for material fabrication utilizing the polymerization of nanoparticles. USA Patent №6812268 B2, Nov. 2, 2004]. Недостатком этого метода является необходимое окисление поверхности металлических частиц с образованием на ней гидроксильных групп, через которые осуществляется химическая связь с мономером и возможность полимеризации.

Техническим результатом является получение термостабильных нанокомпозитов Cu/ПАН при отжиге смеси CuCl2/ПАН содержащих наночастицы Cu с размером от 10 до 80 нм.

Способ получения термостабильного нанокомпозита Cu/ПАН содержит стадии приготовления смеси CuCl2, HNO3HNO3=37%) и ПАН (М=1×105) в отношении (1÷6):(15÷600):(1,6÷15) (весовые части), при этом должны выполняться условия: mCuCl2/mПАН<0,7; выдерживание 72 часа при 25°С до полного растворения CuCl2 и ПАН в HNO3; выпаривание HNO3 при 90°С; термообработка при 200÷300°С в течение 1÷40 минут при Р=10-3÷760 мм рт.ст. полученного твердого вещества. В результате образуются термостабильный нанокомпозит, содержащий частицы Cu с размером 10÷80 нм, которые при повторном нагреве на воздухе до 200°С не образуют оксида меди.

Для измерения размеров наночастиц Cu использованы рентгеновский дифрактометр ДРОН-1,5 (СиК-излучение) с модернизированной коллимацией, сканирующий и просвечивающий электронные микроскопы JSM-6700F и JEM-100CX2 соответственно. Средний кристаллический размер (LC) наночастиц Cu рассчитан из рентгеновских дифрактограмм с помощью уравнения Дебай-Шеррера:

LC=k/Bcos,

где k – константа, равная 0,89; В – полуширина дифракционного угла соответственного дифракционного максимума; =1,54056 Å – длина волны рентгеновского CuK-излучения.

Пример 1. Делаем навески CuCl2 с mCuCl2=0,05 г; ПАН с mПАН=0,46 г; приготавливаем 20 мл HNO3HNO3=37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 1:400:9,2 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Получаем твердое вещество салатового цвета. Переносим тигель с твердым веществом в сушильный шкаф, нагретый до Т=250°С. При пиролизе ПАН на воздухе выделяется атомарный Н, Н2, СО и образуются гидрохиноидные и сопряженные структуры с альдегидными функциональными группами, которые восстанавливают Cu из соли CuCl2.

CuCl2+H2=Cu°+2HCl

CuCl2+2H=Cu°+2HCl

R-C(O)H+CuCl2R-C(O)OH+Cu+HCl

НО-С6Н4-ОН+CuCl2O=С6Н4=O+2НСl+Cu°

После выдержки в сушильном шкафу в течение 30 мин получаем нанокомпозит Cu/ПАН коричневого цвета. По данным методов рентгеновской дифракции (фиг.1) и сканирующей электронной микроскопии (фиг.2) определен размер наночастиц, составляющий приблизительно 26 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению наночастиц Cu по данным метода рентгеновской дифракции.

Пример 2. Делаем навески CuCl2 с mCuCl2=1,65 г; ПАН с mПАН=2,77 г; приготавливаем 30 мл HNO3HNO3=37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 1:18:1,7 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель, и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Получаем твердое вещество салатового цвета. Переносим тигель с твердым веществом в установку термического отжига. Отжигаем образец при Р=3×10-3 мм рт.ст. и 250°С в течение 20 мин. После охлаждения получаем нанокомпозит Cu/ПАН коричневого цвета. По данным метода просвечивающей электронной микроскопии (фиг.3) определен размер наночастиц, составляющий приблизительно 10 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.

Пример 3. Делаем навески CuCl2 с mCuCl2=0,60 г; ПАН с mПАН=1,00 г; приготавливаем 10 мл HNO3 (CHNO3 = 37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 1:16,6:1,6 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Переносим тигель с твердым веществом в сушильный шкаф, нагретый до Т=250°С. После выдержки в сушильном шкафу в течение 4 минут получаем нанокомпозит Cu/ПАН коричневого цвета. По данным методов рентгеновской дифракции определен размер наночастиц, составляющий приблизительно 20 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.

Пример 4. Делаем навески CuCl2 с mCuCl2=1,5 г; ПАН с mПАН=3,45 г; приготавливаем 15 мл HNO3HNO3 = 37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 6:60:14 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Получаем твердое вещество салатового цвета. Переносим тигель с твердым веществом в установку термического отжига. Отжигаем образец при Р=1×10-3 мм рт.ст. и 300°С в течение 40 мин. После охлаждения получаем нанокомпозит Cu/ПАН коричневого цвета. По данным рентгеноструктурного анализа определен размер наночастиц, составляющий приблизительно 80 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.

Пример 5. Делаем навески CuCl2 с mCuCl2=0,50 г; ПАН с mПАН=175 г; приготавливаем 12,5 мл HNO3HNO3=37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 4:100:14 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Переносим тигель с твердым веществом в сушильный шкаф, нагретый до Т=250°С. После выдержки в сушильном шкафу в течение 25 минут получаем нанокомпозит Cu/ПАН коричневого цвета. По данным методов рентгеновской дифракции определен размер наночастиц, составляющий приблизительно 50 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.

От условий приготовления (температура; газовая атмосфера; давление в реакционной камере; время термической обработки; концентрация соли меди в полимере; весовое соотношение соли меди, растворителя и полимера) зависит размер наночастиц меди. Зависимость размера наночастиц Cu, измеренных с помощью метода рентгеновской дифракции, в матрице ПАН от условий отжига и соотношения компонентов показаны в таблице.

Таблица
Зависимость размера наночастиц Cu в матрице полиакрилонитрила от условий отжига и соотношения компонентов в исходном растворе CuCl2/HNO3/ПАН
CuCl2/HNO3/ПАН (вес. часть) Т, °С Давление в реакционной камере, мм рт.ст. Время выдержки, мин Размер наночастиц Cu, нм
1 1:400:9,2 250 760 30 26
2 1:16,6:1,6 250 760 2 12
3 1:16,6:1,6 250 3×10-3 20 31
4 1:16,6:1,6 250 1×10-3 1
5 1:16,6:1,6 250 760 4 20
6 1:60:1,6 200 3×10-3 30
7 1:60:1,6 225 2×10-3 10
8 1:60:1,6 225 1×10-3 20
9 1:18:1,7 250 3×10-3 20 22
10 1:18:1,7 250 4×10-3 1 15
11 6:60:14 300 1×10-3 40 80
12 1,9:600:15 230 1×10-3 30 10
13 2,8:15:10 240 1×10-3 30 40
14 4:100:14 250 760 25 50
15 5:120:9 200 1×10-3 35 15

Формула изобретения

Способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl2, HNO3 и ПАН (М,=1×105), выдерживание до растворения CuCl2 и ПАН в HNO3, выпаривание HNO3, нагревание полученного твердого вещества, отличающийся тем, что осуществляют приготовление смеси CuCl2, HNO3 и ПАН в отношении (1÷6):(15÷600):(1,6÷15) (весовые части) при условии выдерживание в течение 72 часа при 25°С до полного растворения CuCl2 и ПАН в HNO3; выпаривание HNO3 при 90°С; термообрабатывание полученного твердого вещества при давлении и температуре 10-3÷760 мм рт.ст и 200÷300°С соответственно в течение 1-40 мин с образованием термостабильного нанокомпозита Cu/ПАН, содержащего наночастицы Cu с размером от 10 до 80 нм.

РИСУНКИ


TK4A – Поправки к публикациям сведений об изобретениях в бюллетенях “Изобретения (заявки и патенты)” и “Изобретения. Полезные модели”

Напечатано: (72) …, Карпухин Всеволод Валерьевич (RU), …

Следует читать: (72) …, Крапухин Всеволод Валерьевич (RU), …

Номер и год публикации бюллетеня: 22-2008

Код раздела: FG4A

Извещение опубликовано: 27.08.2009 БИ: 24/2009


Categories: BD_2330000-2330999