|
(21), (22) Заявка: 2007107345/04, 28.02.2007
(24) Дата начала отсчета срока действия патента:
28.02.2007
(46) Опубликовано: 10.08.2008
(56) Список документов, цитированных в отчете о поиске:
RU 2259871 С2, 10.09.2005. SU 212872 А, 29.11.1968. US 6812268 В2, 02.11.2004. RU 2088328 C1, 27.08.1997. US 5912069 A, 15.06.1999.
Адрес для переписки:
119049, Москва, ГСП-1, В-49, Ленинский пр-кт, 4, МИСиС, отдел защиты интеллектуальной собственности, проректору МИСиС по науке и инновациям А.А.Аксенову
|
(72) Автор(ы):
Кожитов Лев Васильевич (RU), Карпухин Всеволод Валерьевич (RU), Козлов Владимир Валентинович (RU), Карпачева Галина Петровна (RU)
(73) Патентообладатель(и):
Федеральное государственное образовательное учреждение высшего профессионального образования “Государственный технологический университет “Московский институт стали и сплавов” (МИСиС) (RU), Институт нефтехимического синтеза им. А.В.Топчиева Российской академии наук (ИНХС) (RU)
|
(54) СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТАБИЛЬНОГО НАНОКОМПОЗИТА Cu/ПОЛИАКРИЛОНИТРИЛ
(57) Реферат:
Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН). Описан способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl2, HNO3 (СHNO3=37%) и ПАН (М =1×105), выдерживание до растворения CuCl2 и ПАН в HNO3, выпаривание HNO3, нагревание полученного твердого вещества, причем осуществляют приготовление смеси CuCl2, HNO3 и ПАН в отношении (1÷6):(15÷600):(1,6÷15) (весовые части) при условии mCuCl2/mПАН<0,7; выдерживание в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3; выпаривание HNO3 при 90°С; термообрабатывание полученного твердого вещества при давлении и температуре 10-3÷760 мм рт.ст. и 200÷300°С соответственно, в течение 1÷40 минут с образованием термостабильного нанокомпозита Cu/ПАН, содержащего наночастицы Cu с размером от 10 до 80 нм. Техническим результатом является получение термостабильных нанокомпозитов Cu/ПАН при отжиге смеси CuCl2/ПАН, содержащих наночастицы Cu с размером от 10 до 80 нм. 1 табл., 3 ил.
Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН).
Для получения композитов, содержащих наночастицы Cu, используют полимеры в качестве матрицы, которая препятствует агломерации наночастиц [T.W.Schneider, R.C.White. Methods for material fabrication utilizing the polymerization of nanoparticles. USA Patent №6812268 B2, Nov. 2, 2004]. Недостатком этого метода является необходимое окисление поверхности металлических частиц с образованием на ней гидроксильных групп, через которые осуществляется химическая связь с мономером и возможность полимеризации.
Техническим результатом является получение термостабильных нанокомпозитов Cu/ПАН при отжиге смеси CuCl2/ПАН содержащих наночастицы Cu с размером от 10 до 80 нм.
Способ получения термостабильного нанокомпозита Cu/ПАН содержит стадии приготовления смеси CuCl2, HNO3 (СHNO3=37%) и ПАН (М =1×105) в отношении (1÷6):(15÷600):(1,6÷15) (весовые части), при этом должны выполняться условия: mCuCl2/mПАН<0,7; выдерживание 72 часа при 25°С до полного растворения CuCl2 и ПАН в HNO3; выпаривание HNO3 при 90°С; термообработка при 200÷300°С в течение 1÷40 минут при Р=10-3÷760 мм рт.ст. полученного твердого вещества. В результате образуются термостабильный нанокомпозит, содержащий частицы Cu с размером 10÷80 нм, которые при повторном нагреве на воздухе до 200°С не образуют оксида меди.
Для измерения размеров наночастиц Cu использованы рентгеновский дифрактометр ДРОН-1,5 (СиК -излучение) с модернизированной коллимацией, сканирующий и просвечивающий электронные микроскопы JSM-6700F и JEM-100CX2 соответственно. Средний кристаллический размер (LC) наночастиц Cu рассчитан из рентгеновских дифрактограмм с помощью уравнения Дебай-Шеррера:
LC=k /Bcos ,
где k – константа, равная 0,89; В – полуширина дифракционного угла соответственного дифракционного максимума; =1,54056 Å – длина волны рентгеновского CuK -излучения.
Пример 1. Делаем навески CuCl2 с mCuCl2=0,05 г; ПАН с mПАН=0,46 г; приготавливаем 20 мл HNO3 (СHNO3=37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 1:400:9,2 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Получаем твердое вещество салатового цвета. Переносим тигель с твердым веществом в сушильный шкаф, нагретый до Т=250°С. При пиролизе ПАН на воздухе выделяется атомарный Н, Н2, СО и образуются гидрохиноидные и сопряженные структуры с альдегидными функциональными группами, которые восстанавливают Cu из соли CuCl2.
CuCl2+H2=Cu°+2HCl
CuCl2+2H=Cu°+2HCl
R-C(O)H+CuCl2 R-C(O)OH+Cu+HCl
НО-С6Н4-ОН+CuCl2 O=С6Н4=O+2НСl+Cu°
После выдержки в сушильном шкафу в течение 30 мин получаем нанокомпозит Cu/ПАН коричневого цвета. По данным методов рентгеновской дифракции (фиг.1) и сканирующей электронной микроскопии (фиг.2) определен размер наночастиц, составляющий приблизительно 26 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению наночастиц Cu по данным метода рентгеновской дифракции.
Пример 2. Делаем навески CuCl2 с mCuCl2=1,65 г; ПАН с mПАН=2,77 г; приготавливаем 30 мл HNO3 (СHNO3=37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 1:18:1,7 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель, и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Получаем твердое вещество салатового цвета. Переносим тигель с твердым веществом в установку термического отжига. Отжигаем образец при Р=3×10-3 мм рт.ст. и 250°С в течение 20 мин. После охлаждения получаем нанокомпозит Cu/ПАН коричневого цвета. По данным метода просвечивающей электронной микроскопии (фиг.3) определен размер наночастиц, составляющий приблизительно 10 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.
Пример 3. Делаем навески CuCl2 с mCuCl2=0,60 г; ПАН с mПАН=1,00 г; приготавливаем 10 мл HNO3 (CHNO3 = 37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 1:16,6:1,6 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Переносим тигель с твердым веществом в сушильный шкаф, нагретый до Т=250°С. После выдержки в сушильном шкафу в течение 4 минут получаем нанокомпозит Cu/ПАН коричневого цвета. По данным методов рентгеновской дифракции определен размер наночастиц, составляющий приблизительно 20 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.
Пример 4. Делаем навески CuCl2 с mCuCl2=1,5 г; ПАН с mПАН=3,45 г; приготавливаем 15 мл HNO3 (СHNO3 = 37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 6:60:14 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Получаем твердое вещество салатового цвета. Переносим тигель с твердым веществом в установку термического отжига. Отжигаем образец при Р=1×10-3 мм рт.ст. и 300°С в течение 40 мин. После охлаждения получаем нанокомпозит Cu/ПАН коричневого цвета. По данным рентгеноструктурного анализа определен размер наночастиц, составляющий приблизительно 80 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.
Пример 5. Делаем навески CuCl2 с mCuCl2=0,50 г; ПАН с mПАН=175 г; приготавливаем 12,5 мл HNO3 (СHNO3=37%) для изготовления смеси, состоящей из CuCl2, HNO3 и ПАН в отношении 4:100:14 (весовые части). Берем коническую колбу (V=50 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленную HNO3. Затем засыпаем в колбу навеску CuCl2. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения CuCl2 и ПАН в HNO3 получаем голубой раствор. Полученный раствор заливаем в тонкостенный фарфоровый тигель и выпариваем HNO3 из раствора (Т=90°С) на водяной бане. Переносим тигель с твердым веществом в сушильный шкаф, нагретый до Т=250°С. После выдержки в сушильном шкафу в течение 25 минут получаем нанокомпозит Cu/ПАН коричневого цвета. По данным методов рентгеновской дифракции определен размер наночастиц, составляющий приблизительно 50 нм. Повторный отжиг образца при 200°С в течение 20 минут не приводит к окислению медных наночастиц по данным метода рентгеновской дифракции.
От условий приготовления (температура; газовая атмосфера; давление в реакционной камере; время термической обработки; концентрация соли меди в полимере; весовое соотношение соли меди, растворителя и полимера) зависит размер наночастиц меди. Зависимость размера наночастиц Cu, измеренных с помощью метода рентгеновской дифракции, в матрице ПАН от условий отжига и соотношения компонентов показаны в таблице.
Таблица |
Зависимость размера наночастиц Cu в матрице полиакрилонитрила от условий отжига и соотношения компонентов в исходном растворе CuCl2/HNO3/ПАН |
№ |
CuCl2/HNO3/ПАН (вес. часть) |
Т, °С |
Давление в реакционной камере, мм рт.ст. |
Время выдержки, мин |
Размер наночастиц Cu, нм |
1 |
1:400:9,2 |
250 |
760 |
30 |
26 |
2 |
1:16,6:1,6 |
250 |
760 |
2 |
12 |
3 |
1:16,6:1,6 |
250 |
3×10-3 |
20 |
31 |
4 |
1:16,6:1,6 |
250 |
1×10-3 |
1 |
– |
5 |
1:16,6:1,6 |
250 |
760 |
4 |
20 |
6 |
1:60:1,6 |
200 |
3×10-3 |
30 |
– |
7 |
1:60:1,6 |
225 |
2×10-3 |
10 |
– |
8 |
1:60:1,6 |
225 |
1×10-3 |
20 |
– |
9 |
1:18:1,7 |
250 |
3×10-3 |
20 |
22 |
10 |
1:18:1,7 |
250 |
4×10-3 |
1 |
15 |
11 |
6:60:14 |
300 |
1×10-3 |
40 |
80 |
12 |
1,9:600:15 |
230 |
1×10-3 |
30 |
10 |
13 |
2,8:15:10 |
240 |
1×10-3 |
30 |
40 |
14 |
4:100:14 |
250 |
760 |
25 |
50 |
15 |
5:120:9 |
200 |
1×10-3 |
35 |
15 |
Формула изобретения
Способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl2, HNO3 и ПАН (М ,=1×105), выдерживание до растворения CuCl2 и ПАН в HNO3, выпаривание HNO3, нагревание полученного твердого вещества, отличающийся тем, что осуществляют приготовление смеси CuCl2, HNO3 и ПАН в отношении (1÷6):(15÷600):(1,6÷15) (весовые части) при условии выдерживание в течение 72 часа при 25°С до полного растворения CuCl2 и ПАН в HNO3; выпаривание HNO3 при 90°С; термообрабатывание полученного твердого вещества при давлении и температуре 10-3÷760 мм рт.ст и 200÷300°С соответственно в течение 1-40 мин с образованием термостабильного нанокомпозита Cu/ПАН, содержащего наночастицы Cu с размером от 10 до 80 нм.
РИСУНКИ
TK4A – Поправки к публикациям сведений об изобретениях в бюллетенях “Изобретения (заявки и патенты)” и “Изобретения. Полезные модели”
Напечатано: (72) …, Карпухин Всеволод Валерьевич (RU), …
Следует читать: (72) …, Крапухин Всеволод Валерьевич (RU), …
Номер и год публикации бюллетеня: 22-2008
Код раздела: FG4A
Извещение опубликовано: 27.08.2009 БИ: 24/2009
|
|