|
(21), (22) Заявка: 2006110797/15, 03.04.2006
(24) Дата начала отсчета срока действия патента:
03.04.2006
(43) Дата публикации заявки: 10.10.2007
(46) Опубликовано: 10.08.2008
(56) Список документов, цитированных в отчете о поиске:
RU 2232714 С2 20.07,2004. RU 2092449 С1 10.10.1997. Остроушко Ю.И. и др. Литий, его химия и технология. – М.: Атомиздат, 1960, С.164-165. US 3278260 А 11.10.1966. CN 1483673 A1 24.03.2004, [abstract].
Адрес для переписки:
630110, г.Новосибирск-110, ул. Б. Хмельницкого, 94, ОАО Новосибирский завод химконцентратов, патентно-информационный отдел
|
(72) Автор(ы):
Шемякин Сергей Владимирович (RU), Шемякина Ирина Владимировна (RU), Мухин Виктор Васильевич (RU), Муратов Евгений Павлович (RU)
(73) Патентообладатель(и):
Открытое акционерное общество “Новосибирский завод химконцентратов” (RU)
|
(54) СПОСОБ ОЧИСТКИ ХЛОРИДА ЛИТИЯ
(57) Реферат:
Изобретение относится к способу очистки хлорида лития и получения высокочистой соли хлорида лития, которую используют для получения лития металлического высокого качества. Изобретение может найти использование в химической, фармацевтической, металлургической и других отраслях промышленности. Способ очистки хлорида лития от примесей включает получение технологического раствора хлорида лития с остаточным содержанием оксихлоридов лития, который получают растворением в воде технологического гидроксида лития или приготовлением пульпы технического карбоната лития с последующим хлорированием раствора гидроксида лития или пульпы карбоната лития отходящей с электролизеров хлорвоздушной смесью газов в присутствии катализатора, используемого для разложения оксихлоридов лития. Корректировку рН полученного раствора хлорида лития проводят перед непрерывной сорбционной очисткой раствором гидроксида лития или карбонатом лития до содержания гидроксил-иона (ОН–) в пределах 0,0002-0,005 моль/дм3. Сорбционную очистку раствора хлорида лития проводят на катионообменной смоле на основе сшитого макропористого полистирола с введенными в матрицу полимера слабокислотными иминодиацетатными группами с линейной скоростью пропускания 3-20 м/час. Способ позволяет повысить степень очистки технологического раствора хлорида лития от примесей, увеличить срок службы катионообменной смолы. Очищенный таким образом раствор хлорида лития позволяет получить литий металлический высокого качества. 1 табл., 3 ил.
Изобретение относится к способу очистки хлорида лития и получения высокочистой соли хлорида лития, которую используют для получения лития металлического высокого качества. Изобретение может найти использование в химической, фармацевтической, металлургической и других отраслях промышленности.
Известен способ очистки раствора хлорида лития от кальция и магния методом упаривания, перекристаллизации и экстракции органическими растворителями (Литий, его химия и технология. Остроушко Ю.И. и др. М., Атомиздат, 1960 г., стр.164-165). Основным недостатком способа является длительный цикл очистки, трудоемкость и недостаточная степень очистки получаемого хлорида лития.
Известен способ очистки хлорида лития от примесей щелочных и щелочно-земельных металлов по патенту RU 2092449, МПК С02F 1/58, 20.12.1995 г. Сущность изобретения: соли лития контактируют в противотоке с раствором хлорированного дикарболлида кобальта и полиэфира в нитроорганическом растворителе. Оптимальная концентрация полиэфира составляет 0,01-0,6 моль/л, а концентрация лития в водном растворе не превышает 5 моль/л. В качестве растворителей полиэфира используют, например, нитробензол, нитротолуол, нитроэтилбензол. В качестве полиэфира используют полиэтиленгликоль, краун-эфир, криптанд или смесь замещенных эфиров полиэтиленгликоля. При контакте раствора соли лития с экстрагентом в органический раствор переходят примеси натрия, калия, кальция, магния. Основным недостатком изобретения является использование органических соединений, растворителей, которые необходимо утилизировать, что связано с необходимостью решать экологические проблемы, влечет дополнительные затраты и повышает уровень безопасности производства.
Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату (прототип) является способ очистки хлорида лития патент RU 2232714, МПК С01D 15/04 от 20.07.2004 Бюл.№20, включающий получение хлорида лития методом растворения его в деионизованной воде и непрерывную сорбционную очистку проводят со скоростью 1,5-6,0 мл/см2·мин при температуре 10÷40°С, где в качестве сорбента используют винилпиридиновый амфолит или аминофосфоновые смолы хелатного типа.
Недостатком данного изобретения является то, что аминофосфоновая смола хелатного типа загрязняет очищаемый технологический раствор хлорида лития фосфат-ионами, имеет невысокую обменную емкость, а винилпиридиновый амфолит не выпускается в промышленных объемах.
Задача изобретения – повышение степени очистки технологического раствора хлорида лития от примесей, увеличение срока службы катионообменной смолы.
Поставленная задача решается благодаря тому, что в способе очистки хлорида лития, включающем получение и непрерывную сорбционную очистку раствора хлорида лития согласно формуле изобретения, в качестве хлорида лития используют технологический раствор хлорида лития с остаточным содержанием оксихлоридов лития, который получают растворением в воде технического гидроксида лития или приготовлением пульпы технического карбоната лития с последующим хлорированием раствора гидроксида лития или пульпы карбоната лития отходящей с электролизеров хлорвоздушной смесью газов в присутствии катализатора, используемого для разложения оксихлоридов лития, корректировку рН полученного раствора хлорида лития проводят перед непрерывной сорбционной очисткой раствором гидроксида лития или карбонатом лития до содержания гидроксил-иона (ОН–) в пределах 0,0002-0,005 моль/ дм3, а сорбционную очистку проводят на катионообменной смоле на основе сшитого макропористого полистирола с введенными в матрицу полимера слабокислотными иминодиацетатными группами с линейной скоростью пропускания 3-20 м/час.
Указанная совокупность признаков является новой и обладает изобретательским уровнем, так как получение технологического раствора хлорида лития включает использование различных технических солей лития, которые могут быть использованы в качестве исходного сырья. Наличие остаточного содержания оксихлоридов лития накладывает определенные требования к сорбенту. Предлагаемая катионообменная смола Lewatit TP 208 на основе сшитого макропористого полистирола с введенными в матрицу полимера слабокислотными иминодиацетатными группами позволяет избежать загрязнение очищаемого раствора, обладает стойкостью в широком диапазоне рН и при этом не разрушается. Корректировка технологического раствора хлорида лития раствором гидроксида лития или карбонатом лития необходима для нейтрализации свободной кислоты, образующейся в процессе хлорирования. Экспериментально выбранные рН раствора хлорида лития и скоростные режимы позволяют получать соль хлорида лития высокого качества и повысить срок эксплуатации используемой смолы.
На фиг.1 представлена схема получения технологического раствора хлорида лития, где
I – растворение в воде технического гидроксида лития или приготовление пульпы карбоната лития;
II – хлорирование раствора гидроксида лития или пульпы карбоната лития в присутствии катализатора;
III – корректировка рН технологического раствора хлорида лития раствором гидроксида лития или карбонатом лития.
На фиг.2. приведена зависимость изменения концентрации кальция в очищаемом растворе хлорида лития от объема, пропускаемого через смолу технологического раствора хлорида лития.
На фиг.3 приведены графики содержания кальция и фосфат-иона в сухой соли хлорида лития после очистки технологического раствора хлорида лития на смоле Purolite S 940 и Lewatit TP 208.
Способ очистки технологического раствора осуществляют следующим образом.
Технический гидроксид лития загружают в реактор и при перемешивании растворяют в воде. Вместо гидроксида лития можно использовать технический карбонат лития, из которого получают водную пульпу карбоната лития, растворяя сухой технический карбонат лития в воде при перемешивании в соотношении т:ж=1:(5-10). После чего проводят хлорирование раствора гидроксида лития или пульпы карбоната лития в присутствии катализатора отходящей с электролизеров хлорвоздушной смесью газов. Полученный раствор с остаточным содержанием оксихлоридов лития отфильтровывают и проводят корректировку рН раствором гидроксида или карбонатом лития. Затем проводят контрольную фильтрацию технологического раствора хлорида лития и пропускают его через ионообменную колонну с катионообменной смолой Lewatit TP 208, в Li-форме с линейной скоростью пропускания 3-20 м/час. Очистку раствора хлорида лития ведут до проскока по содержанию кальция в очищаемом растворе до 2-3 мг/л. Полученный таким образом раствор хлорида лития высушивают до сухой соли и используют для получения лития металлического.
Пример 1.
Технологический раствор хлорида лития получают по схеме, представленной на фиг.1.
Очистку 4 N технологического раствора хлорида лития с содержанием LiClO3 < 5,0 г/дм3, LiClO < 0,05 г/дм3, ОН – (0,0002-0,005) моль/дм3 на смоле Lewatit TP 208 до первой регенерации вели с 23.06.05 г.до 10.10.05 г. Объем и расход пропускаемого через ионообменную колонну раствора фиксировали. За указанный период было очищено 1500 м3 раствора хлорида лития. Содержание кальция в неочищенном и очищенном растворах хлорида лития определяли атомно-абсорбционным (ААС) методом. При оценке обменной емкости смолы использовали усредненные значения содержания кальция за определенные периоды времени (таблица 1). Содержание фосфат-иона в очищаемом растворе определяли химическим методом. Данные по сорбционной очистке растворов хлорида лития от кальция на катионообменной смоле Lewatit TP 208 представлены в табл.1.
Таблица 1. |
Дата |
Усредненное содержание Са до очистки, мг/л |
Содержание Са после очистки, мг/л |
Содержание РО4 после очистки, мг/л |
Порция р-ра, м3 |
Суммарный объем, м3 |
Масса сорбир. Са, г |
24.06.05 |
14,75 |
0,27 |
0,26 |
12,0 |
12,0 |
173,8 |
27.06.05 |
14,75 |
0,11 |
0,13 |
47,9 |
59,9 |
701,3 |
05.07.05 |
14,75 |
0,23 |
<1 |
183,0 |
242,9 |
2657,2 |
12.07.05 |
14,75 |
0,1 |
<1 |
58,0 |
300,9 |
849,7 |
14.07.05 |
14,75 |
0,2 |
<1 |
15,5 |
316,4 |
225,5 |
15.07.05 |
14,75 |
0,3 |
<1 |
17,5 |
333,9 |
252,9 |
18.07.05 |
14,75 |
0,09 |
<1 |
5,5 |
339,4 |
80,6 |
21.07.05 |
13,00 |
0,3 |
<1 |
19,5 |
358,9 |
247,7 |
26.07.05 |
9,90 |
0,3 |
<1 |
74,0 |
432,9 |
710,4 |
03.08.05 |
12,75 |
0,3 |
<1 |
82,0 |
514,9 |
1020,9 |
09.08.05 |
10,58 |
0,1 |
<1 |
66,7 |
581,6 |
699,0 |
11.08.05 |
12,25 |
0,1 |
<1 |
41,0 |
622,6 |
498,2 |
18.08.05 |
11,13 |
0,4 |
<1 |
66,0 |
688,6 |
708,2 |
24.08.05 |
14,10 |
0,4 |
<1 |
37,5 |
726,1 |
513,8 |
01.09.05 |
13,62 |
0,8 |
<1 |
106,0 |
832,1 |
1358,9 |
02.09.05 |
15,67 |
0,8 |
<1 |
24,5 |
856,6 |
364,3 |
08.09.05 |
15,99 |
0,8 |
<1 |
104,5 |
961,1 |
1587,4 |
09.09.05 |
16,63 |
0,6 |
<1 |
25,0 |
986,1 |
400,8 |
13.09.05 |
21,97 |
1 |
<1 |
53,5 |
1039,6 |
1121,9 |
16.09.05 |
23,50 |
1 |
<1 |
22,0 |
1061,6 |
495,0 |
19.09.05 |
17,50 |
1,1 |
<1 |
35,5 |
1097,1 |
582,2 |
20.09.05 |
22,00 |
1,1 |
<1 |
14,0 |
1111,1 |
292,6 |
21.09.05 |
18,00 |
1 |
<1 |
8,5 |
1119,6 |
144,5 |
26.09.05 |
18,69 |
1,3 |
<1 |
101,0 |
1220,6 |
1756,4 |
29.09.05 |
22,47 |
1,4 |
<1 |
59,5 |
1280,1 |
1253,7 |
04.10.05 |
19,89 |
1,5 |
<1 |
69,5 |
1349,6 |
1278,1 |
05.10.05 |
23,20 |
1,7 |
<1 |
7,0 |
1356,6 |
150,5 |
06.10.05 |
26,40 |
2,2 |
<1 |
31,0 |
1387,6 |
750,2 |
10.10.05 |
26,42 |
2,2 |
<1 |
100,5 |
1488,1 |
2434,1 |
сумма 23309,5 |
Объем смолы в ионообменной колонне составляет 1 м3, следовательно, емкость смолы до проскока по сорбции кальция (CCa=2,2 мг/л) составляет 23,3 г/л или 1,165 экв/л. Изменение концентрации кальция от объема очищенного раствора представлено на фиг.2. Зависимость имеет экспоненциальный вид, экстраполируя которую, можно получить полную обменную емкость по сорбции кальция на смоле Lewatit TP 208 в Li-форме, равную 1,7 экв/л. Содержание фосфат-ионов в очищенном растворе хлорида лития составляло <1 мг/л (таблица 1).
Пример 2.
Технологический раствор хлорида лития получают по схеме, представленной на фиг.1
Очистку 4 N технологического раствора хлорида лития с содержанием LiClO3 < 5,0 г/дм3, LiClO < 0,05 г/дм3, ОН – (0,0002-0,005) моль/дм3 с 29.03 по 20.06.2005 г. вели на смоле Purolite S 940 и с 23.06.05 г. до 10.10.05 г. на смоле Lewatit TP 208 до первой регенерации. Объем и расход пропускаемого через ионообменную колонну раствора фиксировали. Объем смолы и скорость пропускания раствора была одинаковая как в первом, так и во втором эксперименте. Содержание примесей кальция и фосфат-иона в исходном и в очищенном растворах определяли химическим и ААС методами.
Для сравнения за указанный период был очищен раствор хлорида лития и получен сухой продукт после очистки на смоле Purolite S 940 (на основе аминофосфоновой кислоты хелатного типа) и Lewatit TP 208 (на основе сшитого макропористого полистирола с введенной в матрицу полимера слобокислотных иминодиацетатных групп) для дальнейшего получения лития металлического. О более высокой эффективности катионообменной смолы Lewatit TP 208 в сравнении со смолой Purolite S 940 при очистке растворов хлорида лития можно судить по содержанию кальция и фосфат-иона в хлориде лития (фиг.3). При очистке растворов хлорида лития на смоле Purolite S 940 содержание кальция и фосфат-иона в среднем составляло 1,2·10-3 и 2,2·10-3% соответственно. При очистке растворов хлорида лития на смоле Lewatit TP 208 содержание кальция в среднем составило 0,87·10-3%, а фосфат-иона – 1,4·10-3%.
В ходе проведения промышленных испытаний обнаружено, что после двух регенераций смолы Purolite S 940 полная обменная емкость его упала в три раза, что привело к полной его замене, так как дальнейшее его использование было нецелесообразно.
Лабораторные исследования смолы Lewatit TP 208, проведенные с использованием технологического раствора хлорида лития, показали, что при проведении процесса сорбции-десорбции 5 раз полная обменная емкость упала на 10%.
Промышленные испытания смолы Lewatit TP 208, проведенные в течение пяти месяцев, показали высокую обменную емкость до проскока (за проскок принята концентрация примеси кальция в очищаемом растворе – 2,2 мг/л) и достижение более низкого содержания примесей в очищаемом растворе хлорида лития.
Формула изобретения
Способ очистки хлорида лития, заключающийся в получении и непрерывной сорбционной очистке раствора хлорида лития, отличающийся тем, что в качестве хлорида лития используют технологический раствор хлорида лития с остаточным содержанием оксихлоридов лития, который получают растворением в воде технического гидроксида лития или приготовлением пульпы технического карбоната лития, с последующим хлорированием раствора гидроксида лития или пульпы карбоната лития отходящей с электролизеров хлорвоздушной смесью газов в присутствии катализатора, используемого для разложения оксихлоридов лития, корректировку рН полученного раствора хлорида лития проводят перед непрерывной сорбционной очисткой раствором гидроксида лития или карбоната лития до содержания гидроксил-иона (ОН–) в пределах 0,0002-0,005 моль/дм3, а сорбционную очистку проводят на катионообменной смоле на основе сшитого макропористого полистирола с введенными в матрицу полимера слабокислотными иминодиацетатными группами с линейной скоростью пропускания 3-20 м/час.
РИСУНКИ
|
|