Патент на изобретение №2160761
|
||||||||||||||||||||||||||
(54) СПОСОБ ДЕЗОДОРИРУЮЩЕЙ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА И МЕРКАПТАНОВ
(57) Реферат: Изобретение относится к способам реагентной очистки нефти и газоконденсата от сероводорода и меркаптанов и может быть использовано в газонефтедобывающей и нефтеперерабатывающей промышленности. Содержащиеся в нефти или газоконденсате сероводород и меркаптаны обрабатывают водным раствором, содержащим формальдегид, азотсодержащие органические основания (первичные и вторичные амины, алканоламины и мочевину), аммиак и едкий натр и/или карбонат натрия, с образованием менее токсичных соединений. В сырье вводят в расчете на 1 моль H2S и RSH 0,8 – 10,0 моль формальдегида, 0,3 – 5,0 моль азотсодержащего основания, мочевины, аммиака или их смесей и 0,001 – 0,05 мас. % NaOH и/или Na2CO3. Реагенты вводят в виде водных растворов или в виде предварительно приготовленной смеси. Вместо воды можно применять отработанный водный раствор. Концентрация аминов по отношению к воде составляет 3 – 35%. Реакцию ведут при 0 – 60oC. Для ускорения процесса дополнительно могут быть введены до 1 моль элементной серы на 1 моль RSH и до 0,1 нм3 воздуха на 1 моль сероводородной и меркаптановой серы. Способ позволяет снизить расход реагентов при высокой степени очистки сырья и энергетические расходы. 8 з.п. ф-лы, 2 табл. Изобретение относится к способам реагентной очистки нефти и газоконденсата от сероводорода и меркаптанов и может быть использовано в газонефтедобывающей и нефтеперерабатывающей промышленности для дезодорации нефти и газоконденсата. В нефтях и газоконденсатах может присутствовать до 0,05% (500 ppm) сероводорода и до 0,5% меркаптановой серы (5000 ppm). Присутствие сероводорода и легких, низкокипящих меркаптанов C1-C3 создает дурной запах нефти и газоконденсата. При нарушении герметичности хранилищ сероводород и низкокипящие меркаптаны могут попасть в атмосферу. Предельно допустимая концентрация в жилой зоне составляет: для сероводорода 8 ![]() ![]() ![]() ![]() Использование разбавленных (3-35%) растворов амина позволяет более эффективно экстрагировать из сырья низкомолекулярные, наиболее токсичные меркаптаны C1-C3. В водной фазе эмульсии, где концентрация альдегида и амина гораздо выше, чем в органической фазе, водорастворимые меркаптаны C1-C3 быстро реагируют с реагентами. Таким образом, использование 3-35%-ных растворов амина позволяет повысить селективность процесса демеркаптанизации, т.е. избирательность процесса по отношению к меркаптанам C1-C3, а также повысить скорость реакции за счет увеличения количества водной фазы. Повышение скорости реакции и возможность удлинения времени реакции за счет образования более стойкой эмульсии в итоге позволяют провести процесс при более низкой (0-25oC) температуре, чем в известных способах (30-80oC), отпадает необходимость обогрева сырья перед дезодорацией, т.е. упрощается технологический процесс. В предлагаемом способе предусмотрена возможность повторного использования части отработанного водного раствора реагентов для разбавления исходного амина, что позволяет экономить дорогостоящий амин и позволяет снизить количество токсичных отработанных вод. При использовании растворов с концентрацией амина менее 3% снижается скорость реакции демеркаптанизации из-за разбавления формальдегида. При увеличении концентрации амина выше 35% снижается селективность (избирательность) процесса по отношению к меркаптанам C1-C3. Водные растворы формальдегида (технический формалин или параформальдегид), аминов, щелочных агентов и отработанный водный раствор могут быть введены в сырье по отдельности или в виде предварительно приготовленных смесей. Замена дорогостоящих аминов на более дешевую и доступную мочевину [CO(NH)2] при очистке сырья от сероводорода позволяет снизить удельные расходы в рублях на реагенты. Дополнительное введение элементной серы несколько ускоряет процесс, так как сера с меркаптанами образует гидрополисульфиды: RSH + S = RSnH, которые более реакционноспособны, чем меркаптаны. Сера может быть введена путем предварительного растворения ее в исходном амине. Серу можно также растворить до 1-1,5% в сырье, потом этот раствор вводить в очищаемое сырье. Дополнительное введение кислорода (воздуха) под давлением 0,1-1,0 МПа также ускоряет процесс, так как растворенный в сырье кислород в присутствии амина окисляет сероводород и частично меркаптаны до элементарной серы и дисульфидов. Давление нужно для растворения воздуха в сырье; при 1,0 МПа в нефтях растворяется около 1 нм3 воздуха, что может окислять до 10 молей сероводорода. Это дает возможность сэкономить формальдегид. В товарный технический формалин ГОСТ 1625-89 с целью исключения замерзания в зимнее время добавляют до 10% метилового спирта. Присутствие метанола не влияет на процесс демеркаптанизации. Для снижения температуры замерзания формалина вместо метанола можно вводить ацетон. Присутствие ацетона в предлагаемом процессе в отличие от метанола ускоряет процесс нейтрализации меркаптанов (это известно из а. с. 1579927 и 1567598 (51) 5C 10 G 19/04, 1988), т.е. дает дополнительный положительный эффект. Наряду с использованием технического формалина в предлагаемом изобретении предусмотрена возможность применения полимерного формальдегида (параформ, параформальдегид), который более удобен для транспортирования в отдаленные от дорог нефтепромыслы. Как в известном, так и в предлагаемом способах из очищенного сырья при отстаивании выделяется отработанная вода, содержащая амины и формальдегид. Наиболее эффективным способом обезвреживания сточных вод от формальдегида является его конденсация путем обработки щелочами. В предлагаемом способе щелочь (NaOH или Na2CO3) уже содержится в этой воде, т.е. нет необходимости дополнительного подщелачивания сточных вод. Предлагаемый способ дезодорирующей очистки нефти и газоконденсата прост в осуществлении и может быть внедрен на нефтепромыслах как временная мера до создания промышленных установок очистки сырья от H2S и RSH или на промыслах с небольшим объемом добычи нефти. Отечественная промышленность производит 37%-ный технический формалин по ГОСТ 1625-89 и моноэтаноламин по ТУ 6-02-915-84, которые могут быть использованы при реализации предлагаемого способа. Предлагаемый способ опробован в лабораторных условиях. Ниже приведены примеры и результаты проведенных экспериментов. Пример 1. В 100 мл нефти или газоконденсата добавляют расчетные количества 37%-ного формалина, содержащего 4% метанола, и раствора моноэтаноламина (МЭА) и соды в воде. Смесь в закрытой колбе под атмосферой аргона при 0-60oC перемешивают магнитной мешалкой в течение 3-30 мин, после дают выдержку без перемешивания при той же температуре. Через 0,5; 1 и 3 ч берут пробы на анализ (табл. 1). В табл. 1 приведено содержание легких меркаптанов C1-C3 в расчете на серу в исходном и очищенном сырье. Расходы реагентов CH2O и МЭА приведены в молях на 1 моль сероводородной серы ![]() 1). В предлагаемом способе из-за присутствия щелочи или соды, которые с нафтеновыми кислотами образуют нафтенаты натрия (эмульгаторы), образуются более устойчивые эмульсии, резко увеличивается время отделения (сепарации) водных растворов реагентов от сырья после прекращения перемешивания, т.е. удлиняется время контакта. 2). В предлагаемом способе используют более обводненный раствор реагентов, количество этого раствора значительно выше, чем количество более концентрированного раствора в известном способе, что приводит к увеличению поверхности контакта между органической и водной фазами в эмульсии; водорастворимые, низкомолекулярные меркаптаны и сероводород в большей степени переходят в водную фазу, где быстро реагируют с формальдегидом. Сочетание этих факторов позволяет резко снизить необходимое время перемешивания (уменьшается объем реактора), снизить температуру реакции и расходы на обогрев сырья и провести более глубокую очистку сырья при одних и тех же расходах реагентов (см. опыты N 1 и 5; 2 и 3; 6 и 8) или сократить расход реагентов (см. опыты N 3 и 5). Снижение расхода реагентов, естественно, приводит к уменьшению их количества в отходах – в отработанной воде. В опыте N 14 МЭА разбавляли отработанной водой, образовавшейся в опыте N 13. При одинаковых расходах свежих реагентов в этих опытах, в опыте N 14 достигнута более глубокая очистка. Повторное использование отработанной воды, содержащей амины, мочевину и непрореагировавший формальдегид, позволяет снизить расход реагентов и количество отработанной воды. Увеличение количества меркаптанов за первые 30 мин реакции объясняется образованием меркаптометанола и его производных из сероводорода по реакциям: CH2O + H2S —> HOCH2SH; HOCH2SH + H2S + CH2O —> HOCH2-S- CH2-SH. Меркаптаны, в том числе меркаптометанол, реагируют с формальдегидом медленнее, чем сероводород; в упрощенном виде реакцию можно записать уравнением: R’NH2 + CH2O + RSH —> R’NHCH2SR + H2O Мочевина в эту реакцию вступает слабо, но вполне может быть применена для очистки сырья от сероводорода (опыт N 10). Пример 2. В качестве сырья применяют Карачаганакский газоконденсат, содержащий: ![]() Готовят 12%-ный раствор соды в воде. В этот раствор или воду вводят расчетные количества МЭА или мочевины. Расчетное количество полученного раствора помещают в круглодонную колбу вместимостью 100 мл, воздух из колбы выдувают аргоном. В колбу вводят 50 г сырья и расчетное количество раствора формальдегида (формалина), закрывают пробкой и энергично перемешивают встряхиванием в течение 3 мин. Температура 18oC. Далее дают выдержку при этой же температуре без перемешивания. Через определенное время из средней зоны раствора берут пробы на анализ хроматографическим способом H2S и меркаптанов CH3SH, C2H5SH и C3H7SH. Результаты опытов приведены в табл. 2. Так как при больших расходах формальдегида (более 2 моль на 1 моль RSH) и МЭА сероводород и метилмеркаптан быстро исчезают, чтобы проверить избирательность предлагаемого способа по отношению к различным меркаптанам, опыты проводят с небольшими расходами реагентов при комнатной температуре. Как следует из табл. 2, присутствие соды заметно улучшает процесс (опыты N 1 и 2), но на избирательность реакции по отношению к меркаптанам влияет мало (опыты N 3 и 4). Увеличение расхода МЭА приводит в первую очередь к снижению содержания H2S и CH3SH (опыт N 5). В присутствии мочевины в основном реагирует только сероводород (опыт N 9). Повышение концентрации амина выше 35% по отношению к воде в реакционной смеси (опыт N 10 по прототипу) приводит к явному снижению избирательности процесса. Присутствие серы (серу предварительно растворяют в сырье) или введение воздуха заметно ускоряет процесс. Формальдегид в виде полимеров (параформ) реагирует с H2S и RSH заметно слабее, чем формалин (опыт N 11). Однако подвозка порошкообразного параформа на отдаленные нефтепромыслы и хранение его, особенно в зимнее время, на практике может быть более удобным, чем использование формалина. Формула изобретения
РИСУНКИ
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
Номер и год публикации бюллетеня: 13-2002
(73) Патентообладатель:
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 07.03.2002 № 14105
Извещение опубликовано: 10.05.2002
|
||||||||||||||||||||||||||