Патент на изобретение №2327508

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2327508 (13) C1
(51) МПК

B01D45/04 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.10.2010 – может прекратить свое действие

(21), (22) Заявка: 2007100310/15, 09.01.2007

(24) Дата начала отсчета срока действия патента:

09.01.2007

(46) Опубликовано: 27.06.2008

(56) Список документов, цитированных в отчете о
поиске:
RU 2259861 С2, 10.09.2005. RU 2178332 С1, 20.01.2002. RU 2207183 С1, 27.06.2003.

Адрес для переписки:

443001, г.Самара, ул. Молодогвардейская, 194, СГАСУ, патентный отдел

(72) Автор(ы):

Тюрин Николай Павлович (RU),
Ватузов Денис Николаевич (RU),
Щибраев Александр Евгеньевич (RU),
Тюрин Денис Николаевич (RU),
Тарасова Елена Вячеславна (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования “Самарский государственный архитектурно-строительный университет” (СГАСУ) (RU)

(54) КОАКСИАЛЬНЫЙ СЕПАРАТОР КАПЕЛЬНОГО АЭРОЗОЛЯ

(57) Реферат:

Изобретение относится к устройствам для очистки газовых сред от аэрозоля туманов, конденсационные частицы которых не превышают 1 мкм, и может быть использовано в любой отрасли промышленности, где в технологических или вентиляционных процессах необходима подобная операция. Сепаратор состоит из корпуса с патрубками для ввода аэрозоля и вывода очищенного газа, осадительных элементов, стабилизирующих устройств и бункера сбора осажденного коагулянта. Осадительные элементы выполнены в виде тонкостенных металлических цилиндров, коаксиально скомпонованных в пакет с зазором между цилиндрами =6 мм, при этом отношение длины осадительного элемента к эквивалентному диаметру зазора L/DЭ=250. Техническим результатом изобретения является упрощение и удешевление конструкции очистного устройства и повышение эффективности очистки газовой среды. 5 ил.

Изобретение относится к устройствам для осаждения частиц капельного аэрозоля и может быть использовано при очистке вентиляционных и технологических выбросов.

Основными задачами при проектировании очистных аппаратов являются повышение эффективности очистки и снижение их габаритных размеров. Эффективные способы очистки упомянутых сред от взвеси путем фильтрации в волокнистых фильтрах сложны и порой затруднительны в отношении эксплуатации и, кроме того, требуют периодической замены элементов. Чаще всего не возможен возврат в производство ценного продукта.

Известны конструкции устройств для очистки газовых сред от капельных аэрозолей с весьма невысокой эффективностью и высоким аэродинамическим сопротивлением / Ужов В.Н. Очистка промышленных газов фильтрами / Ужов В.Н., Мягков Б.И. – М.: Химия, 1970. – С. 117-122 / [1].

Для повышения эффективности могут применяться электрофильтры / Внутренние санитарно-технические устройства: В 3-х ч. 4.3.: Вентиляция и кондиционирование воздуха. Кн. 2. / Под ред. Н.Н.Павлова, Ю.И.Шиллера. – 4-е изд., перераб. и доп. – М.: Стройиздат, 1992. – 416 с. – (Справ. проектировщика) / [2].

Недостатком этих устройств являются конструктивная сложность, громоздкость и дороговизна.

Опытные исследования и практика показали, что в подобных случаях весьма эффективным является способ осаждения взвесей путем турбулентной коагуляции частиц.

Данное устройство имеет ряд существенных недостатков конструктивного и аэродинамического характера. При очистке значительных объемов газа количество трубок в осадительном пакете может достигать многих тысяч штук, что делает очистное устройство сложным в изготовлении, тяжелым и дорогим, особенно при применении трубок из цветного металла.

Техническим результатом изобретения является упрощение и удешевление конструкции очистного устройства и повышение эффективности очистки газовой среды.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном устройстве, состоящем из корпуса с патрубками для ввода аэрозоля и вывода очищенного газа, осадительных элементов, стабилизирующих устройств и бункера сбора осажденного коагулянта, особенностью является то, что осадительные элементы выполнены в виде тонкостенных металлических цилиндров, коаксиально скомпонованных в пакет с зазором между цилиндрами =6 мм, при этом отношение длины осадительного элемента к эквивалентному диаметру зазора L/DЭ=250.

В данном устройстве предлагается в качестве осадительных элементов использовать тонкостенные металлические цилиндры, которые соосно компонуются в осадительный пакет с щелевыми зазорами между листами =6 мм. Такой размер принят исходя из масштаба турбулентности, при котором наиболее эффективно осаждаются частицы субмикронных размеров, что подтверждается нашими опытами и опытами зарубежных исследователей по осаждению субмикронных частиц в трубках диаметром dвн<8 мм. Осадительный пакет может быть один или несколько в зависимости от расчетного значения L. В последнем случае они устанавливаются последовательно и количество их, определяемое конструктивными соображениями, должно быть кратным величине L. По этим же соображениям внутренний цилиндр с конусным обтекателем (=45°) на входе аэрозоли должен иметь диаметр не менее 2r=200 мм.

По данным наших исследований, а также зарубежной и отечественной информаций в области турбулентного переноса и осаждения частиц аэрозоля известно, что частицы его оседают в каналах любого профиля и что эффективность осаждения зависит, в основном, от скорости движения и аэрозоля и отношения протяженности осадительного канала L к его эквивалентному (гидравлическому) диаметру DЭ-L/DЭ. Отмечается также большая эффективность при вертикальном, чем при горизонтальном или наклонном положении осадительного канала.

Известно, что для высокоэффективного осаждения частиц аэрозоля движение газа в трубках должно быть развитым турбулентным, то есть при числах Рейнольдса ReD>10000-12000, в плоских же каналах при 4800 (DЭ – эквивалентный диаметр канала). Следовательно, в плоских каналах длина начального участка LН будет в 2-2,5 раза короче, чем в круглой трубке при одинаковых прочих характеристиках. Это условие позволяет сократить длину осадительного канала L и, следовательно, габаритный размер очистного устройства.

На фиг.1 представлено продольное сечение коаксиального сепаратора капельного аэрозоля и стабилизирующего устройства.

На фиг.2 – поперечное сечение стабилизирующего устройства

На фиг.3 – поперечное сечение крепления тонкостенных металлических цилиндров к гребенке.

На фиг.4 – компоновка осадительного элемента в пакете.

На фиг.5 – опорная крестовина.

Коаксиальный сепаратор капельного аэрозоля содержит сварной корпус 1, осадительный элемент 2 с внутренним стержнем 3, стабилизирующее устройство 4, конфузор 5 для подвода очищаемого аэрозоля, «гребенку» 6, опорную крестовину 7, приваренную к фланцу диффузора 8, стабилизирующую сетку 9, патрубок отвода очищенного газа 10 и бункер 11 сбора и удаления коагулянта.

С целью придания устойчивости осадительному пакету его торцы фиксируются «гребенками» 6 из полосовой стали, к которым привариваются наружная и внутренняя стенки осадительных элементов 2.

Для стабилизации турбулентного поля скоростей на входе аэрозоля в сепаратор установлено стабилизирующее устройство 4 (хонейкомб), а после осадительных элементов 2 – стабилизирующая сетка 9 с живым сечением 80%.

В предлагаемом устройстве с целью защиты от уноса предусмотрено снижение скорости газа за счет расширения каналов транспорта на выходе из осадительного элемента 2 и из бункера 11 сбора и удаления коагулянта. Угол раскрытия конфузора 5 и диффузора 8 2=15° выбран исходя из условий минимального гидравлического сопротивления. Снижение гидравлического сопротивления позволяет увеличить эффективность сепарации за счет увеличения скорости течения газа. Опорная крестовина 7 приваривается к фланцу диффузора 8, соединяя таким образом осадительные элементы 2 с бункером 11 сбора и удаления коагулянта.

Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата.

Сепаратор аэрозоля устанавливается вертикально и работает в режиме всасывания или нагнетания по схеме «сверху – вниз».

Устройство работает следующим образом: аэрозоль, подлежащий очистке, поступает в сепаратор через конфузор 5 и стабилизирующее устройство 4 в щелевые коаксиальные каналы осадительного элемента 2, на стенках которого выпадает коагулянт, стекающий вниз в бункер 11, а очищенный газ через стабилизирующую сетку 9 и патрубок отвода очищенного газа 10 удаляются из сепаратора.

Критерий изобретения «промышленная применимость» подтверждается тем, что данное техническое решение может быть использовано в промышленности, например для очистки вентиляционных выбросов от тумана пластификаторов, содержащих диоктилфталат при производстве поливинилхлоридной пленки.

Реализация предлагаемого технического решения позволяет значительно упростить конструкцию очистительного устройства и создает предпосылки для увеличения эффективности сепарации аэрозоля.

Исследования, проведенные с опытно-промышленным образцом при числах Re=5000 по очистке вентиляционных выбросов от тумана пластификаторов, содержащих диоктилфталат, показали высокую эффективность осаждения частиц аэрозоля, при L/DЭ=250, превышающую 99%. Очевидно что, увеличение значения числа Re позволит достичь еще более высокой эффективности очистки.

Источники информации

1. Ужов В.Н. Очистка промышленных газов фильтрами / Ужов В.Н., Мягков Б.И. – М.: Химия, 1970. – С 117-122.

2. Внутренние санитарно-технические устройства: В 3-х ч. Ч.3.:

Вентиляция и кондиционирование воздуха. Кн. 2. / Под ред. Н.Н.Павлова, Ю.И.Шиллера. – 4-е изд., перераб. и доп. – М.: Стройиздат, 1992. – 416 с. – (Справ., проектировщика).

Формула изобретения

Коаксиальный сепаратор капельного аэрозоля, состоящий из корпуса с патрубками для ввода аэрозоля и вывода очищенного газа, осадительных элементов, стабилизирующих устройств и бункера сбора осажденного коагулянта, отличающийся тем, что осадительные элементы выполнены в виде тонкостенных металлических цилиндров, коаксиально скомпонованных в пакет с зазором между цилиндрами =6 мм, при этом отношение длины осадительного элемента к эквивалентному диаметру зазора L/DЭ=250.

РИСУНКИ

Categories: BD_2327000-2327999