Патент на изобретение №2326860
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ВОССТАНОВЛЕНИЯ АЛЬФА-ГАЛОГЕНКЕТОНОВ ДО ВТОРИЧНЫХ АЛЬФА-ГАЛОГЕНСПИРТОВ
(57) Реферат:
Изобретение относится к способу получения Формула I где каждый из “X” независимо означает атом галогена за исключением фтора, атом водорода и “Z” означает атом галогена за исключением фтора; с молекулярным водородом в присутствии гетерогенного катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь, причем металл катализирует гидрирование по существу всех карбонильных групп Формула II
Кроме того, изобретение относится к способу получения эпоксидов (варианты), к способу получения эпигалогенгидрина (варианты) и к способу получения пропиленоксида (варианты). 11 н. и 22 з.п. ф-лы, 3 табл.
Настоящее изобретение относится к способу получения Существует множество кетонов, известных из уровня техники, и гидрирование кетонов не является чем-то необычным. Однако
Патент Японии № 63-297333 описывает способ получения 1,3-дихлор-2-пропанола из 1,3-дихлорацетона с использованием алюминийизопропоксида в качестве гомогенного катализатора с избытком изопропанола в качестве реагента переноса водорода. Селективности в 95 процентов или ниже могут быть получены при использовании способа по патенту Японии № 63-297333, но не может быть использовано количество алюминийизопропоксида менее 0,01 эквивалента. Патент Японии № 09-104648 описывает способ гидрирования WO 9800375 A1 и EP 295890 A2 описывают способы асимметрического гидрирования Также хорошо известно, что (1) (2) гидрирование 1,3-дихлорацетона в присутствии гомогенного катализатора, приводящее к образованию 1,3-дихлор-2-пропанола; и (3) циклизацию 1,3-дихлорпропанола с основанием, приводящую к образованию эпихлоргидрина. Ограничение всех вышеуказанных способов составляет потребность в гомогенном катализаторе для выполнения селективного восстановления Поэтому задача настоящего изобретения состоит в разработке технически выполнимого и легко регулируемого способа эффективного восстановления Другая задача настоящего изобретения состоит в разработке улучшенного способа гидрирования для получения Также задачей настоящего способа является разработка такого способа, при котором используемые давления и температуры позволяют легко осуществлять эксплуатацию более экономичным образом. Также к задачам настоящего изобретения относится развитие уровня техники; прочие задачи станут очевидны в дальнейшем. Одним из аспектов настоящего изобретения является способ получения Способ по настоящему изобретению может быть представлен следующим общим уравнением: Вторым аспектом настоящего изобретения является способ получения эпоксидов, включающий стадии: (1) гидрирования (2) циклизацию Способ по настоящему изобретению основан на использовании гетерогенного катализатора, что таким образом упрощает режим работы реактора и облегчает отделение/повторное использование катализатора. Один из ключевых аспектов настоящего изобретения состоит в обнаружении гетерогенного катализатора, который позволяет выполнять такое гидрирование селективно. Способ по настоящему изобретению также пригоден для синтеза эпоксидов из В настоящее время Катализатор, используемый в способе по настоящему изобретению, является твердым веществом и поэтому легко может быть выделен из реакционной смеси и легко отделен от продукта. Способ по настоящему изобретению позволяет получать Формула I где каждый из “X” независимо означает атом галогена за исключением атома фтора, атом водорода или органическую группу и “Z” означает атом галогена за исключением атома фтора. 1,3-дихлорацетон является одним из примеров
Формула II где каждый из “X” независимо означает атом галогена за исключением атома фтора, атом водорода или органическую группу и “Z” означает атом галогена за исключением атома фтора. 1,3-дихлор-2-пропанол является одним из примеров Примеры подходящих Формула III где каждый из “X” независимо означает галоген за исключением фтора. “X” в приведенной выше формуле III предпочтительно означает иод, хлор или бром и наиболее предпочтительно хлор. Гидрирование При взаимодействии по настоящему изобретению потребляется один моль гидрирующего агента на моль получаемого Максимальное количество источника гидрирующего агента не играет решающей роли и определяется практическими соображениями, такими как давление, эффективность реактора и безопасность. Когда источник гидрирующего агента является газообразным, то количество гидрирующего агента предпочтительно должно быть, по меньшей мере, достаточным для обеспечения требуемого давления. Однако в большинстве случаев реактор предпочтительно содержит не более 1.000 молей молекулярного водорода на моль Взаимодействие по настоящему изобретению происходит в присутствии гетерогенного катализатора, содержащего переходный металл. Переходным металлом, используемым в гетерогенном катализаторе по настоящему изобретению, может служить один или более металлов, выбираемых из групп IB, IIB или IIIA-VIIIA периодической таблицы элементов, как в настоящее время принято согласно Международному союзу теоретической и прикладной химии (ИЮПАК). Металлы катализатора, пригодные по настоящему изобретению, выбирают так, чтобы в условиях взаимодействия металлы катализировали гидрирование всех карбонильных групп молекулы Иллюстративным примером катализатора по настоящему изобретению могут служить, например, смешанные металлические катализаторы иридий/рутений, описанные в опубликованной европейской патентной заявке 1140751. Атомное соотношение металла иридия и металла рутения в катализаторе обычно составляет от 0,02 до 15, предпочтительно от 0,05 до 10, более предпочтительно от 0,15 до 8 и наиболее предпочтительно от 0,3 до 2,0. Гетерогенным катализатором, полезным по настоящему изобретению, может служить, например, переходный металл, осажденный на нерастворимом носителе или адсорбированный нерастворимым носителем, таким как диоксид кремния, силилированный диоксид кремния, углерод, оксид алюминия, оксид титана, диоксид циркония, оксид магния и другие общепринятые носители, известные из уровня техники, как описано в Poncelet et al. editors, Preparation of Catalysts III, New York, 1983; P.N. Rylander, Hydrogenation Methods, Academic Press, London, 1985; P.N. Rylander, Catalytic Hydrogenation Over Platinum Metals, Academic Press, New York, 1967; P. Rylander, Catalytic Hydrogenation in Organic Syntheses, Academic Press, New York, 1979. Гетерогенным катализатором по настоящему изобретению может быть также переходный металл, координационно-связанный с лигандами, химически соединенными с полимерной смолой, например рутений на фосфинированном полистироле. Катализатор представлен обычно в форме гранул или таблеток. Количество активного катализатора на носителе составляет обычно от 0,1 процента (процентное) до 25 процентов и предпочтительно от 0,5 до 15 процентов. Одно из преимуществ употребления гетерогенного катализатора в способе по настоящему изобретению состоит в возможности выделять катализатор из реакционного раствора различными способами, такими как фильтрация. Идеальное соотношение катализатора и реагентов, используемых по настоящему способу, варьируется в зависимости от скорости потока, величины слоя, температуры, требуемой степени конверсии, реагентов и других факторов, определяющих данный способ. Обычно слой гетерогенного катализатора содержит от 0,0001 до 100 молей металла катализатора на каждый моль проходящего через слой Взаимодействие по настоящему изобретению необязательно, но предпочтительно осуществляют в присутствии растворителя. Используемый растворитель предпочтительно является инертным в отношении всех реагентов в условиях взаимодействия. Растворитель может быть выбран так, что: (1) растворитель не кипит в условиях взаимодействия, и (2) Примеры подходящих растворителей, пригодных по настоящему изобретению, включают ароматические и алифатические углеводороды, хлорированные углеводороды, простые эфиры, глимы, простые гликолевые эфиры, сложные эфиры, спирты, амиды и их смеси. Конкретные примеры растворителей, полезных по настоящему изобретению, включают толуол, циклогексан, гексан, метиленхлорид, диоксан, диметиловый эфир, диглим, 1,2-диметоксиэтан, этилацетат, метанол, NMP и их смеси. Количество растворителя, используемого по настоящему изобретению, не имеет решающего значения и определяется в первую очередь практическими соображениями, такими как эффективность реактора. Обычно количество растворителя, присутствующего в реакционной смеси, изменяется в пределах от 0 до 99,99 массовых процентов. В наиболее предпочтительных случаях реакционная смесь по настоящему изобретению преимущественно содержит, по меньшей мере, 5 массовых процентов Когда реакционная смесь содержит спирт, взаимодействие предпочтительно осуществляют в условиях по существу отсутствия сильных минеральных кислот, таких как соляная кислота, которые могут приводить к снижению селективности и выходов. “По существу отсутствие” сильных минеральных кислот означает, что концентрация таких кислот является ниже достаточного уровня, так что кислоты не катализируют образование со значительными выходами кеталей из Не вдаваясь в теоретическое обоснование, считается, что сильная кислота катализирует взаимодействие Примеры подходящих акцепторов кислот, используемых по настоящему изобретению, включают: карбонаты щелочных металлов; бикарбонаты щелочных металлов; карбоксилаты щелочных металлов; аммоний- и фосфонийкарбоксилаты, бикарбонаты и карбонаты; эпоксиды и смеси указанных соединений. Конкретные примеры акцепторов кислот включают карбонат натрия, бикарбонат натрия, аммонийбикарбонат, этиленоксид, пропиленоксид, бутиленоксид, эпихлоргидрин и их смеси. Эпихлоргидрин является предпочтительным эпоксидом, служащим акцептором кислоты. Температура взаимодействия не имеет решающего значения при условии, что все реагенты и катализатор находятся в тесном контакте друг с другом. Однако низкие температуры требуют более длительного осуществления реакции. Реакционная температура составляет предпочтительно, по меньшей мере, -10°C, более предпочтительно, по меньшей мере, 20°C и наиболее предпочтительно, по меньшей мере, 50°C. Температура реакции составляет предпочтительно ниже 250°C, более предпочтительно не выше 150°C и наиболее предпочтительно не выше 120°C. Температура реакции предпочтительно составляет от 0 до 200°C и более предпочтительно от 50 до 120°C. Давление реакции не имеет решающего значения до тех пор, пока обеспечивается достаточное количество гидрирующего агента, такого как водород, для протекания взаимодействия в реакционной смеси. Давление составляет предпочтительно, по меньшей мере, 14 фунтов на квадратный дюйм в абсолютном значении (абс.фунт/кв.дюйм) (97 килоПаскалей (кПа), 1 атмосфера) и более предпочтительно, по меньшей мере, 50 абс.фунт/кв.дюйм (340 кПа, 3,4 атмосферы). Давление предпочтительно составляет не выше 3.000 абс.фунт/кв.дюйм (21 МПа, 204 атмосферы). Увеличение давления ведет к сокращению времени взаимодействия. Обычно время взаимодействия при реакции гидрирования по настоящему изобретению составляет менее 72.000 секунд и преимущественно от 36.000 до 180 секунд достаточно для достижения конверсии, близкой к теоретической, 1 грамма В предпочтительных технологических условиях Продуктом взаимодействия по данному изобретению является
(1) гидрирование (2) циклизацию По другому варианту получения эпоксида перед стадией гидрирования Ключевой стадией способа по настоящему изобретению является селективное гидрирование В частности, способ по настоящему изобретению может быть использован в качестве одной из стадий способа получения, например, эпигалогенгидрина или пропиленоксида из ацетона. В качестве иллюстрации способа, например, способ получения эпигалогенгидрина может быть подробно представлен следующим образом. На стадии (1) способа получения эпигалогенгидрина ацетон галогенируют, получая 1,3-дигалогенацетон. Эта стадия получения 1,3-дихлорацетона описана, например, в патенте США № 4251467 и JP 9255615. На стадии (2) способа по настоящему изобретению 1,3-дигалогенацетон гидрируют с образованием 1,3-дигалоген-2-пропанола. Предпочтительные варианты выполнения такой стадии (2) описаны в настоящей заявке выше. Например, один из вариантов выполнения способа по настоящему изобретению включает стадию взаимодействия 1,3-дигалогенацетона, по меньшей мере, со стехиометрическим количеством молекулярного водорода в присутствии рутенийсодержащего, иридийсодержащего или смешанного рутений-иридий-металлсодержащего катализатора и соответствующего растворителя, такого как диоксан, что приводит к образованию 1,3-дигалоген-2-пропанола. На стадии (3) рассматриваемого способа 1,3-дигалоген-2-пропанол превращают в эпигалогенгидрин. Такая стадия (3) хорошо известна в области получения эпигалогенгидрина. Реакционную стадию (3) обычно осуществляют путем взаимодействия 1,3-дигалоген-2-пропанола с сильным основанием, таким как водный гидроксид щелочного металла, включая, например, гидроксид натрия. Примеры взаимодействия на стадии (3) описаны в патенте США № 2860146 и в патенте Австралии № 630238. Способы получения эпоксидов с использованием настоящего изобретения могут содержать в дополнение к стадии (2) одну или более из вышеуказанных стадий (1), (2) и (3). Способы получения эпоксидов предпочтительно включают стадии (1) и (2), более предпочтительно включают стадии (1), (2) и (3). В способах получения эпоксидов, таких как эпигалогенгидрин или пропиленоксид, можно исходить из смеси, содержащей Следующие примеры приведены исключительно в иллюстративных целях и не могут рассматриваться как ограничивающие рамки объема настоящего описания или приложенных пунктов. Если не оговорено особо, все части и проценты являются массовыми. Общие экспериментальные методики Синтез катализатора: катализаторы получают, пропитывая диоксид кремния водными растворами солей металлов, содержащими IrCl3·3H2O и RuCl3·H2O. Системы смешанных металлов получают совместной пропиткой диоксида кремния двумя солями металлов или пропиткой солью одного металла (и высушиванием) с последующей пропиткой солью другого металла. Катализаторы сушат на воздухе и затем предварительно восстанавливают в токе H2/N2 (5 процентный водород) при 473K (200°C). После чего катализаторы хранят и обрабатывают на воздухе. Система реактора A: реактор включает резервуар в виде трубы 6,35E-3 м Ч 3,05E-1 м (0,25 дюйма Ч 12 дюймов) из Hastelloy сплава, обернутой ленточным электронагревательным элементом и изоляционным материалом, водокольцевой насос и два регулятора расхода, обеспечивающие подачу 3,55E6 Па (500 фунтов на квадратный дюйм, калиброванное (psig)) водорода и азота. Исходная смесь газообразного и жидкого сырья поступает в реактор со дна и выходит через верхнюю часть; после чего сырьевая смесь поступает через регулятор давления всасывания в систему отбора при давлении окружающей среды и затем в каустический скруббер. Действие реактора А: катализатор загружают в реактор, удаляя выпускной трубопровод реактора при сброшенном давлении, добавляют 7,5E-7 м3 Sigma стеклянных бус (425-600 микрон, промытых кислотой), затем в резервуар добавляют 1E-3 кг катализатора и в реактор добавляют еще 7,5E-7 м3 стеклянных бус. Подсоединяют выпускной трубопровод и реактор продувают азотом при давлении окружающей среды в течение одного часа, затем реактор нагревают до 358K (85°C). После чего реактор наполняют водородом до давления 3,55E6 Па (500 фунт на кв. дюйм, к.) и спустя 1/2 часа начинают подачу жидкости. Описание системы реактора B и действие: в этом случае используют резервуар реактора Парра из Hastelloy C сплава емкостью 300 мл. В реактор вносят загрузку катализатора и резервуар реактора вакуумируют и трижды продувают азотом. Смесь растворитель/ Анализ: пробы анализируют методом газовой хроматографии (ГХ), используя Hewlett Packard HP-6890 газовый хроматограф, оборудованный 30 м Rtx-5 капиллярной колонкой с щелевой инжекцией. Приблизительно 120 мкл реакционной смеси растворяют в 5E-6 м3 (5 мл) o-дихлорбензола, содержащего известное количество хлорбензола в качестве ГХ-стандарта (обычно 0,05 массовых процента). “Селективность” определяют как отношение Пример 1 Пример 1 демонстрирует действие катализатора 8 процентный Ir/2 процентный Ru/диоксид кремния в отношении гидрирования 1,3-дихлорацетона. В реакторе A, в реактор загружают, как описано выше в общих экспериментальных методиках, 1,0 г катализатора 8 процентный Ir/2,0 процентный Ru/диоксид кремния. Получают жидкое сырье, состоящее из смеси 10,2 массовых процента 1,3- дихлорацетона/диоксан, и барботируют азотом. Скорость подачи составляет 2,2E-9 м3/с (0,132 куб.см/минута), что соответствует времени взаимодействия 4,440 секунд, как указано ранее. Как указано в общих экспериментальных методиках, 85°C и 500 фунт на кв. дюйм, к. (3,55E6 Па) H2 составляют стандартные условия взаимодействия. В течение 80,5 часов периодически отбирают пробы реакционной смеси и анализируют. Результаты анализа представлены в приведенной ниже таблице I, где “селективность” определяется как отношение 1,3-дихлор-2-пропанола к полученным комбинированным продуктам.
Пример 2 Пример 2 демонстрирует действие катализатора 8 процентный Ir/2 процентный Ru/диоксид кремния в отношении гидрирования 1-хлорацетона. В реакторе A, в реактор загружают, как описано выше в общих экспериментальных методиках, 1,0 г катализатора 8,0 процентный Ir/2,0 процентный Ru/диоксид кремния. Получают жидкое сырье, состоящее из смеси 7,1 массовых процентов 1-хлорацетона/диоксан, и барботируют азотом. Скорость подачи составляет 3,0E-9 м3/с (0,182 куб.см/минута), что соответствует времени взаимодействия 4,675 секунд. Как указано в общих экспериментальных методиках, 85°C и 500 фунт на кв. дюйм, к. (3,55E6 Па) H2 составляют стандартные условия взаимодействия. В течение 68,25 часов периодически отбирают пробы реакционной смеси и анализируют. Результаты анализа представлены в приведенной ниже таблице II, где “селективность” определяется как отношение 1-хлор-2-пропанола к полученным комбинированным продуктам.
Пример 3 Пример 3 дает возможность сравнения гетерогенного катализатора на основе оксида платины (Pt) (катализатор Adams’а) с катализатором 8 процентный Ir/2 процентный Ru/диоксид кремния. Катализатор Adams’а описан ранее в патенте США № 3189656 для гидрирования 1,3-дихлор-1,1,3,3-тетрафторацетона до 1,3-дихлор-l,1,3,3-тетрафтор-2-пропанола. В реактор B загружают либо 0,025 г катализатора Adams’а, либо 0,25 г катализатора 8 процентный Ir/2 процентный Ru/диоксид кремния и резервуар реактора вакуумируют и трижды продувают азотом. 1,3-дихлорацетон (2,5 г), растворенный в 1,4-диоксане (50 мл), дегазируют, барботируя азот, и добавляют в реактор Парра с помощью шприца. В реактор впускают/выпускают азот до давления 250/20 фунт на кв. дюйм, к. (1,8 мПа/241 кПа) и водород до давления 100/20 фунт на кв. дюйм, к. (793 кПа/241 кПа), затем оставляют под давлением водорода 100 фунт на кв. дюйм, к. (793 кПа) и нагревают до 35°C. После 8 часов взаимодействия пробу отбирают шприцем и анализируют ГХ после снижения давления реактора до величины менее 15 фунт на кв. дюйм, к. (207 кПа). Результаты анализа для данного примера 3 приведены ниже в таблице III. Приведенные в таблице III результаты демонстрируют, что катализатор Adams’а хуже по сравнению с катализатором 8 процентный Ir/2 процентный Ru/диоксид кремния по настоящему изобретению, предназначенным для гидрирования не содержащих фтор
Формула изобретения
1. Способ получения где каждый из “X” независимо означает атом галогена, за исключением фтора, атом водорода и “Z” означает атом галогена, за исключением фтора; с молекулярным водородом в присутствии гетерогенного катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь, причем металл катализирует гидрирование по существу всех карбонильных групп где каждый из “X” независимо означает атом галогена, за исключением фтора, атом водорода и “Z” означает атом галогена, за исключением фтора. 2. Способ по п.1, где 3. Способ по п.1, где 4. Способ по п.1, где 5. Способ по п.4, где соотношение молекулярного водорода и 6. Способ по п.4, где соотношение молекулярного водорода и 7. Способ по п.1, где катализатор содержит иридий и рутений при атомном отношении иридия к рутению от 0,02 до 15. 8. Способ по п.7, где атомное отношение иридия к рутению составляет от 0,15 до 8. 9. Способ по п.8, где атомное отношение иридия к рутению составляет от 0,3 до 2. 10. Способ по п.1, где катализатор включает промотор-ион металла группы I или переходного металла. 11. Способ по п.10, где промотор-ион выбирают из группы, в основном состоящей из Li, Na, К, Cs, Mo, W, V, Re, Mn и их смесей. 12. Способ по п.1, где катализатор дополнительно содержит координационно-связывающий лиганд. 13. Способ по п.12, где лиганд выбирают из группы, в основном состоящей из фосфинов, 1,5-циклооктадиена (COD), арсинов, стибинов, моноксида углерода, простых эфиров, циклопентадиенила, сульфоксидов, ароматических аминов и их смесей. 14. Способ по п.13, где лиганд означает фосфин. 15. Способ по п.1, где гетерогенный катализатор нанесен на носитель, выбранный из группы, в основном состоящей из углерода, диоксида кремния, оксида алюминия, оксида титана, диоксида циркония, сшитого полистирола и их комбинаций. 16. Способ по п.1, где гетерогенный катализатор существует в форме слоя гетерогенного катализатора в реакторе и где гетерогенный катализатор присутствует в реакционной смеси при соотношении от 0,0001 до 100 молей металла катализатора на каждый моль проходящего через слой 17. Способ по п.1, где реакционная смесь дополнительно содержит растворитель. 18. Способ по п.17, где растворитель выбирают из группы, в основном состоящей из ароматических углеводородов, алифатических углеводородов, хлорированных углеводородов, простых эфиров, глимов, простых гликолевых эфиров, сложных эфиров, спиртов, амидов, воды и их смесей. 19. Способ по п.17, в котором присутствует растворитель и реакционная смесь содержит не более 90 мас.% 20. Способ по п.1, где реакционная смесь дополнительно содержит поглотитель кислоты. 21. Способ по п.20, где поглотитель кислоты выбирают из группы, в основном состоящей из карбонатов щелочных металлов; бикарбонатов щелочных металлов; карбоксилатов щелочных металлов; аммоний- и фосфонийкарбоксилатов, бикарбонатов и карбонатов; эпоксидов и смесей указанных соединений. 22. Способ по п.20, где поглотителем кислоты является эпихлоргидрин. 23. Способ по п.1, включающий стадию взаимодействия 24. Способ получения эпоксидов, включающий стадии: (а) взаимодействия одного или более где каждый из “X” независимо означает атом галогена, за исключением фтора, атом водорода и “Z” означает атом галогена, за исключением фтора; с гидрирующим агентом в присутствии гетерогенного катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь, при температуре от 1 до 200°С и давлении, по меньшей мере, 14 абс.фунт/кв. дюйм с образованием одного или более где каждый из “X” независимо означает атом галогена, за исключением фтора, атом водорода и “Z” означает атом галогена, за исключением фтора; и (b) взаимодействия одного или более 25. Способ получения эпоксидов, включающий стадии: (a) (b) восстановления одного или более (c) взаимодействия одного или более 26. Способ получения эпигалогенгидрина, включающий стадии: (a) восстановления 1,3-дигалогенацетона в присутствии гетерогенного катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь, приводящего к образованию 1,3-дигалоген-2-пропанола; и (b) взаимодействия 1,3-дигалоген-2-пропанола с основанием с образованием эпигалогенгидрина. 27. Способ получения эпигалогенгидрина, включающий стадии: (a) (b) восстановления 1,3-дигалогенацетона в присутствии гетерогенного катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь, приводящего к образованию 1,3-дигалоген-2-пропанола; и (c) взаимодействия 1,3-дигалоген-2-пропанола с основанием, приводящего к образованию эпигалогенгидрина. 28. Способ получения эпигалогенгидрина, включающий стадии: (а) восстановления 1,3-дигалогенацетона в смеси с другими кетонами, где смесь содержит преимущественно 1,3-дигалогенацетон, в присутствии катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь, с получением преимущественно 1,3-дигалоген-2-пропанола; и (с) взаимодействие 1,3-дигалоген-2-пропанола с основанием с образованием продукта, которым преимущественно является эпигалогенгидрин. 29. Способ получения пропиленоксида, включающий стадии: (a) восстановления 1-галогенацетона в присутствии гетерогенного катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь с образованием 1,3-дигалоген-2-пропанола; и (b) взаимодействия 1-галоген-2-пропанола с основанием, приводящего к образованию пропиленоксида. 30. Способ получения пропиленоксида, включающий стадии: (a) (b) восстановления 1-галогенацетона в присутствии гетерогенного катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь с образованием 1-галоген-2-пропанола; и (с) взаимодействия 1-галоген-2-пропанола с основанием, приводящего к образованию пропиленоксида. 31. Способ получения пропиленоксида, включающий стадии: (а) восстановления 1-галогенацетона в смеси с другими кетонами, где смесь содержит преимущественно 1-галогенацетон в присутствии катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь с образованием 1-галоген-2-пропанола; и (b) взаимодействия 1-галоген-2-пропанола с основанием с образованием продукта, который является преимущественно пропиленоксидом. 32. Способ получения эпигалогенгидрина, включающий стадии: (a) (b) восстановление 1,3-дигалогенацетона в смеси с другими кетонами, где смесь содержит преимущественно 1,3-дигалогенацетон, в присутствии катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь, с образованием преимущественно 1,3-дигалоген-2-пропанола; и (c) взаимодействие 1,3-дигалоген-2-пропанола с основанием с образованием продукта, которым преимущественно является эпигалогенгидрин. 33. Способ получения пропиленоксида, включающий стадии: (a) (b) восстановление 1-галогенацетона в смеси с другими кетонами, где смесь содержит преимущественно 1-галогенацетон, в присутствии катализатора, содержащего переходный металл, где катализатор представляет собой соль металла, которой пропитан носитель катализатора, где металл включает иридий, рутений или их смесь с образованием преимущественно 1-галоген-2-пропанола, и (с) взаимодействие 1-галоген-2-пропанола с основанием с образованием продукта, которым преимущественно является пропиленоксид.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||