Патент на изобретение №2160459
|
||||||||||||||||||||||||||
(54) ОПТИЧЕСКИЙ ВОЛОКОННЫЙ ПЕРЕКЛЮЧАТЕЛЬ
(57) Реферат: Оптический волоконный переключатель содержит оптическое волокно, систему генерации переключающего сигнала и устройство связи. Оптическое волокно имеет двойное лучепреломление между 10-5 и 10-6 и эффективную площадь не менее 40 мкм2. Система генерации генерирует переключающий сигнал, имеющий такой уровень мощности, при котором возникает нелинейное двойное лучепреломление в оптическом волокне, вследствие чего входной сигнал в оптическом волокне меняет поляризационную моду. Устройство связи объединяет входной сигнал и переключающий сигнал в оптическом волокне. Технический результат заключается в том, чтобы свести к минимуму нелинейные эффекты, которые могут исказить входной сигнал в оптическом волоконном переключателе. 6 з.п.ф-лы, 2 ил. Настоящее изобретение относится к оптическому волоконному переключателю, в частности, к двоякопреломляющему оптическому волоконному переключателю с большой эффективной площадью и минимальным линейным двойным лучепреломлением. Оптический волоконный переключатель содержит оптическое волокно с двойным лучепреломлением, пропускающее входной сигнал в виде волны, поляризованной в одной из двух взаимно перпендикулярных плоскостей, и соединенное с оптическим волокном устройство лазерной накачки, генерирующее переключающий сигнал. При работе оптического волоконного переключателя входной сигнал распространяется по оптическому волокну в виде одной из двух взаимно перпендикулярно поляризованных мод, до тех пор, пока в волокно не подан переключающий сигнал с той же поляризацией, что и у входного сигнала. Если переключающий сигнал достаточно мощный, он вызывает нелинейное двойное лучепреломление в оптическом волокне, вследствие чего входной сигнал меняет ориентацию и распространяется в виде другой поляризационной моды. Для сохранения поляризации оптическое волокно в описанном выше оптическом волоконном переключателе подбирается с большим двойным лучепреломлением, т.е. 10-4 или больше, а если оптическое волокно является сильно двоякопреломляющим, оно имеет малую эффективную площадь, т.е. менее 40 мкм2. Основной проблемой такого оптического волоконного переключателя является то, что на входной сигнал в оптическом волоконном переключателе воздействуют нежелательные нелинейные эффекты, которые искажают входной сигнал. К ним относятся плавление волокна (см. “Experimental Investigation of the Fiber Fuse” D. D.Davic & S.C.Mettier in Optical Fiber Conference, WP17, c.l 86-187, 1995), возникновение волн высшего порядка вследствие эффекта Рамана и перекрестная фазовая модуляция, которая подробнее рассматривается ниже. Нелинейные эффекты возникают вследствие большого двойного лучепреломления оптического волокна, малой эффективной площади оптического волокна и высокого уровня мощности переключающего сигнала. В частности, на входной сигнал воздействуют нежелательные нелинейные эффекты из-за высокого уровня мощности переключающего сигнала, необходимого для переключения входного сигнала. Высокий уровень мощности переключающего сигнала необходим из-за большого двойного лучепреломления оптического волокна. Как указано выше, одним из воздействующих на входной сигнал нелинейных эффектов, который увеличивается с увеличением уровня мощности переключающего сигнала, является перекрестная фазовая модуляция. Величина перекрестной фазовой модуляции входного сигнала определяется следующим уравнением: ![]() ![]() ![]() ![]() ![]() ![]() ![]() где L – длина оптического волокна, N2 – коэффициент преломления сердцевины волокна и I – уровень мощности или интенсивность переключающего сигнала (Вт). Как видно из этого уравнения, величина перекрестной фазовой модуляции входного сигнала увеличивается с увеличением уровня мощности или интенсивности переключающего сигнала. Соответственно, уменьшение уровня мощности переключающего сигнала уменьшает величину перекрестной фазовой модуляции. Предлагаемый оптический волоконный переключатель содержит оптическое волокно, систему генерации переключающего сигнала и устройство связи. Оптическое волокно имеет двойное лучепреломление от 10-5 до 10-6 и эффективную площадь не менее 40 мкм2. Система генерации генерирует переключающий сигнал первого уровня мощности, который вызывает нелинейное двойное лучепреломление в оптическом волокне, вследствие чего входной сигнал в оптическом волоконном переключателе меняет поляризационную моду. Устройство связи объединяет входной сигнал и переключающий сигнал в оптическом волокне. Оптическое волокно в оптическом волоконном переключателе сконструировано так, чтобы свести к минимуму нелинейные эффекты, которые могут исказить входной сигнал в оптическом волоконном переключателе. В частности, уменьшение нелинейных эффектов, таких как плавление волокна, возникновение волн высшего порядка и перекрестная фазовая модуляция, в оптическом волоконном переключателе достигается выбором оптического волокна с минимальным двойным лучепреломлением, достаточным для сохранения поляризации и обеспечения слабой связи поляризованных мод, которое имеет большую эффективную площадь и требует более низкого уровня мощности переключающего сигнала для переключения входного сигнала в оптическом волокне, чем в известных оптических волоконных переключателях. На фиг. 1 показана блок-схема усовершенствованного двоякопреломляющего волоконного переключателя в соответствии с предлагаемым изобретением. На фиг. 2 показано поперечное сечение оптического волокна в усовершенствованном двоякопреломляющем волоконном переключателе по линии 2-2 на фиг. 1. Предлагаемый оптический волоконный переключатель 10 показан на фиг. 1. Он содержит оптическое волокно 12 с двойным лучепреломлением от 10-5 до 10-6 и эффективной площадью не менее 40 мкм2, элемент 14 связи и устройство 18 лазерной накачки. Оптическое волокно 12 в оптическом волоконном переключателе 10 сконструировано так, чтобы свести к минимуму нелинейные эффекты, которые могут исказить входной сигнал в оптическом волоконном переключателе 10. В частности, оптический волоконный переключатель 10 сконструирован так, чтобы уменьшить уровень мощности переключающего сигнала, необходимый для создания нелинейного двойного лучепреломления и переключения входного сигнала в оптическом волокне 12. Объединение переключающего сигнала более низкого уровня мощности и оптического волокна 12 с минимальным двойным лучепреломлением и большей эффективной площадью позволяет снизить влияние нежелательных нелинейных эффектов на входной сигнал в оптическом волоконном переключателе 10. На фиг.1 оптический волоконный переключатель 10 содержит оптическое волокно 12, которое имеет двойное лучепреломление, достаточное для сохранения поляризации первой и второй поляризационных мод в оптическом волокне 12, однако достаточно малое, чтобы свести к минимуму нелинейные эффекты, которые искажают входной сигнал в оптическом волоконном переключателе 10. Предпочтительно, чтобы двойное лучепреломление в оптическом волокне 12 было в диапазоне от 10-5 до 10-6, это минимальный диапазон, достаточный для сохранения поляризации и обеспечения слабой связи поляризационных мод. Оптическому волокну 12 для сохранения поляризации не требуется такое большое двойное лучепреломление, как известным оптическим волокнам. Так как оптическое волокно 12 при использовании может скручиваться и изгибаться, минимальный диапазон двойного лучепреломления в оптическом волокне 12, предпочтительно от 10-5 до 10-6, должен быть достаточным, чтобы препятствовать связи между поляризационными модами в оптическом волокне 12 при изгибе и скручивании оптического волокна 12. Ниже показано, что двойное лучепреломление в диапазоне от 10-5 до 10-6 для оптического волокна 12 является достаточным, чтобы препятствовать связи между поляризационными модами в оптическом волокне 12 вследствие изгиба и скручивания. Вызванное изгибом двойное лучепреломление в оптическом волокне обсуждается в “Rotational Effects of Polarization in Optical Fibers in Anisotropic and Nonlinear Optical Waveguides” R.Dandliker, Elseview Press, 1992. Как показано в этой работе, вызванное изгибом двойное лучепреломление ![]() ![]() ![]() ![]() ![]() ![]() ![]() где ![]() ![]() ![]() ![]() Здесь n – собственное двойное лучепреломление оптического волновода 12, ![]() ![]() ![]() Вызванное скручиванием двойное лучепреломление ![]() ![]() ![]() Переходящая из одной моды в другую мощность, дБ, равна PдБ = 10log10[ ![]() ![]() ![]() ![]() ![]() ![]() ![]() Здесь n – собственное двойное лучепреломление оптического волновода 12, ![]() ![]() Например, при коэффициенте скручивания Т = 0,628 рад/м в 10-метровом оптическом волокне 12 с собственным двойным лучепреломлением ![]() ![]() где ![]() ![]() Решая это уравнение относительно Px, получаем следующее уравнение: Px = ( ![]() ![]() Следовательно, если двойное лучепреломление оптического волокна небольшое по сравнению с известными оптическими волокнами для оптических волоконных переключателей, то есть в диапазоне от 10-5 до 10-6, то, как видно из этого уравнения, мощность Px переключающего сигнала тоже будет меньше. Предпочтительно, чтобы мощность переключающего сигнала была в диапазоне от 0,1 до 10 кВт. Как отмечено выше, величина перекрестной фазовой модуляции входного сигнала в оптическом волокне 12 зависит от мощности переключающего сигнала. Уменьшение мощности, необходимой переключающему сигналу, уменьшает величину перекрестной фазовой модуляции. Из уравнения для определения двойного лучепреломления оптического волокна 12 видно, что уменьшение двойного лучепреломления оптического волокна 12 также позволяет увеличить эффективную площадь. Решая уравнение для определения двойного лучепреломления оптического волокна 12 относительно эффективной площади Ax, получаем следующее уравнение Ax = (0,33N2Px)/ ![]() Следовательно, если двойное лучепреломление оптического волокна 12 небольшое, как описано выше, в диапазоне от 10-5 до 10-6, тогда, как видно из этого уравнения, эффективная площадь оптического волокна 12 будет больше. Предпочтительно, чтобы эффективная площадь оптического волокна 12 была 40 мкм2 или больше. Специалистам известно, что увеличение эффективной площади оптического волокна 12 уменьшает влияние нежелательных нелинейных эффектов на входной сигнал. Таким образом, оптический волоконный переключатель 12 позволяет уменьшить нелинейные эффекты, в частности, плавление волокна и возникновение солитонов высшего порядка вследствие эффекта Рамана, посредством уменьшения двойного лучепреломления, увеличения эффективной площади и уменьшения мощности, необходимой для переключающего сигнала. Данное подробное описание приведено в качестве примера. Возможны различные изменения, усовершенствования и модификации, находящиеся в пределах сущности и объема изобретения. Таким образом, изобретение ограничено только формулой изобретения и ее эквивалентами. Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 10.07.2002
Извещение опубликовано: 20.11.2004 БИ: 32/2004
|
||||||||||||||||||||||||||