Патент на изобретение №2160160
|
||||||||||||||||||||||||||
(54) КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ ИЗ ДИМЕТИЛОВОГО ЭФИРА
(57) Реферат: Изобретение относится к процессу получения жидких углеводородов, обогащенных изо- и циклопарафинами, которые могут быть использованы в качестве добавки при производстве высокооктановых бензинов с содержанием ароматических углеводородов не более 30 мас.%. Жидкие углеводороды получают из диметилового эфира с использованием катализатора на основе кристаллического алюмосиликата типа пентасилов с SiO2/Al2O3=25-100, содержащего 0,05-0,1 мас.% оксида натрия, и связующего компонента, который дополнительно содержит оксид цинка и оксиды редкоземельных элементов при следующем соотношении компонентов, мас.%: Zn0 0,5-3,0, оксиды РЗЭ 0,1-5,0, кристаллический алюмосиликат 65-70, связующее остальное. Катализатор активируют на воздухе при 540-560°С. Процесс осуществляют при давлении 0,1-10 МПа, температуре 250-400°С, объемной скорости подачи сырья 250-1100 ч-1. 2 с. и 1 з.п. ф-лы, 2 табл. Изобретение относится к способам получения углеводородов из диметилового эфира, в частности смеси углеводородов, обогащенной изо- и циклопарафинами. Такие жидкие углеводороды могут быть использованы в качестве добавки для получения высокооктановых бензинов с содержанием ароматических углеводородов не более 30 мас.%. Селективность превращения диметилового эфира в ценные углеводороды (сжиженный газ, автомобильные бензины, ароматические углеводороды и др.) определяется свойствами катализатора и условиями процесса. Известно, что эффективными катализаторами конверсии диметилового эфира в смесь углеводородов являются композиции неорганических металлосодержащих компонентов и цеолитов, в частности декатионированных пентасилов H-ZSM-5, H-ZSM-11. [Proc. Int. Zeolite Conf. , 6th. Meeting Date 1983, 316-324, 489-96: Guildford, UK. (English) 1984; S.African ZA 8401683 A 19841128]. Известен способ получения жидких углеводородов или смеси олефинов C2+ из диметилового эфира на модифицированном цеолитном катализаторе или металлосиликате при 300-700oC, давлении 0,1 МПа и массовой скорости подачи сырья 2,3 ч-1 [S.African ZA 9004752 A; 19920226]. С увеличением температуры от 300 до 600oC возрастает селективность образования олефинов C2-C4. Суммарный выход этих олефинов достигает 74-75%, остальное – жидкие углеводороды. Известен способ получения изопарафиновых углеводородов из диметилового эфира, описанный в [Пат. США 4579999, 1986]. В соответствии с указанным патентом диметиловый эфир на высококремнеземном катализаторе ZSM-5 на первой стадии превращается в смесь олефинов C2-C4 и углеводородов C5+. Полученная смесь олефинов направляется на олигомеризацию с использованием среднепористого кислотного цеолитного катализатора. Вторую стадию процесса проводят при повышенном давлении и умеренных температурах. Предусмотрен также рецикл легких углеводородов на первую стадию процесса. Недостатком описанного способа является его многостадийность. Наиболее близким к заявляемому способу является процесс получения олефинов C2-C5 и жидких углеводородов при давлении от 0,1 до 5,0 МПа, температуре 360oC и массовой скорости подачи сырья 1,65 ч-1 [Пат.США 3894106, 1975] . В качестве катализатора предлагается каталитическая система, содержащая 65% HZSM и 35% ![]() ZnO – 0,5 – 3,0 оксиды РЗЭ – 0,1-5,0 кристаллический алюмосиликат – 65 – 70 связующее – остальное Катализатор активируют на воздухе при температуре 540 – 560oC. Процесс осуществляется при давлении 0,1-10 МПа, температуре 250-400oC, объемной скорости подачи сырья 250-1100 ч-1. Наблюдаемый технический эффект повышения выхода жидких углеводородов объясняется, по-видимому, модифицированием кислотных свойств и каталитической активности цеолитного компонента и, возможно, промотирующим эффектом оксидов РЗЭ, находящихся на поверхности кристаллитов цеолита. Цеолиты, используемые в составе предлагаемого катализатора, представляют собой отечественные аналоги пентасилов ЦВМ, ЦВМШ (оба по ТУ 38.401528-85), ЦВН и ЦБК (по ТУ 38.102168-85), содержащие 0,2-0,5 мол.% Na2O, и полученные прямым синтезом (ЦВН) или при обмене исходной Na-формы цеолита на H+ – или NH4+-форму. В качестве связующего компонента могут быть использованы синтетические алюмосиликаты, оксид алюминия. Оксиды РЗЭ образуются на поверхности катализатора при прокалке при 550oC цеолита, пропитанного промышленным концентратом нитратов РЗЭ. Для модифицирования цеолитов в качестве источника РЗЭ использован промышленный концентрат нитратов РЗЭ, содержащий в 1 л 200 г оксидов РЗЭ следующего состава, мол. %: CeO2 – 48; сумма La2O3, PrO3 и Nd2O3 – 52 или водный раствор нитрата неодима. Ниже приведены примеры, подтверждающие эффективность предлагаемого способа получения целевых продуктов. Пример 1. Цеолит ЦВН синтезирован с SiO2/Al2O3, равным 42, с использованием моноэтаноламина. Водородная форма цеолита с заданным остаточным содержанием Na2O (0,05-0,1 мас.%) получена при двукратном обмене Na в 30%-ном растворе азотнокислого аммония с последующей сушкой и прокаливанием в течение 3-х часов при 500-550oC. Оксид Zn вводят в цеолит при обмене его аммонийной формы с водным раствором нитрата цинка. Расчетное количество Nd2O3 наносили на цеолит методом безостаточной пропитки из водного раствора нитрата неодима. Цеолит с заданным содержанием оксидов получали при прокаливании пропитанного образца при 500-550oC. Расчетное количество прокаленного цеолита смешивают со связующим – гидроксидом алюминия (п.м.п.п. – 70%), формуют методом экструзии. Гранулы катализатора (2х2 мм) сушат при 100oC в течение 2 часов, затем активируют прокаливанием на воздухе при 550oC в течение 3 часов. Состав полученного катализатора приведен ниже, мас.%: ZnO – 2,0 Nd2O3 – 1,0 Цеолит ЦВН – 67,0 Al2O2 – 30 Пример 2. Катализатор готовили аналогично примеру 1, с той разницей, что на стадии пропитки аммонийной формы цеолита вместо водного раствора нитрата неодима использовали водный раствор концентрата РЗЭ состава (в расчете на получаемые оксиды) GeO2 – 48; сумма La2O3, PrO3 и Nd2O3 – 52% мол. Состав полученного катализатора приведен ниже, мас.%: ZnO – 2,0 Оксиды РЗЭ – 1,0 Цеолит ЦВН – 67,0 Al2O3 – 30 Примеры 3-18. Катализаторы, полученные по примерам 1, 2, используют для получения углеводородов из диметилового эфира в проточном изотермическом реакторе с загрузкой катализатора 10 г при температуре реактора 250-400oC, давлении 0,1-10,0 МПа, объемной скорости подачи газового сырья 250-1100 ч-1. Жидкие и газообразные продукты реакции анализировали хроматографическими методами. В качестве сырья использовали чистый диметиловый эфир (сырье 1) или газовую смесь следующего состава, содержащую диметиловый эфир (сырье 2), см. табл. 1. Результаты экспериментов приведены в табл. 2. В представленных примерах осуществления предлагаемого способа получения жидких углеводородов из диметилового эфира октановое число (по и.м.) жидких углеводородов не ниже 92. В полученных бензинах доля ароматических углеводородов не превышает 30 мас.%, и они могут быть использованы в качестве основы для получения высокооктановых бензинов с низким содержанием ароматических углеводородов. Высокое октановое число получаемых углеводородов достигается не только за счет ароматических углеводородов, но и за счет более высокого (чем в прототипе) содержания парафинов изо- и циклостроения. Формула изобретения
ZnO – 0,5 – 3,0 Оксиды РЗЭ – 0,1 – 5,0 Кристаллический алюмосиликат – 65 – 70 Связующее – Остальное 2. Способ получения жидких углеводородов из диметилового эфира в присутствии катализатора на основе кристаллического алюмосиликата типа пентасилов с SiO2/Al2O3 = 25 – 100, содержащего 0,05 – 0,1 мас.% оксида натрия, и связующего компонента, отличающийся тем, что используют катализатор, дополнительно содержащий оксид цинка и оксиды редкоземельных элементов при следующем соотношении компонентов, мас.%: ZnO – 0,5 – 3,0 Оксиды РЗЭ – 0,1 – 5,0 Кристаллический алюмосиликат – 65 – 70 Связующее – Остальное и предварительно подвергнутый активации на воздухе при 540 – 560oC. 3. Способ по п. 2, отличающийся тем, что контакт диметилового эфира с катализатором осуществляют при объемной скорости подачи диметилового эфира 250 – 1100 ч-1 (по газу), давлении 0,1 – 10 МПа и температуре 250 – 400oC. РИСУНКИ
|
||||||||||||||||||||||||||