Патент на изобретение №2160153

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2160153 (13) C1
(51) МПК 7
B01D59/48
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 07.06.2011 – действует

(21), (22) Заявка: 99123760/12, 11.11.1999

(24) Дата начала отсчета срока действия патента:

11.11.1999

(45) Опубликовано: 10.12.2000

(56) Список документов, цитированных в отчете о
поиске:
КАЩЕЕВ Н.А., ДЕРГАЧЕВ В.А. Электромагнитное разделение изотопов и изотопный анализ. – М.: Энергоатомиздат, 1989, с.58 – 68, 102, 109. SU 481826 A, 08.12.1975. SU 1827279 A, 15.07.1993. US 4389292 A, 21.06.1983. US 4490225 A, 25.12.1984. US 4496445 A, 29.01.1985. US 4568436 A, 04.02.1986. US 4584073 A, 22.04.1986. US 4584183 A, 22.04.1986.

Адрес для переписки:

624200, Свердловская обл., г. Лесной, Комбинат “Электрохимприбор”, патентная служба

(71) Заявитель(и):

Комбинат “Электрохимприбор”

(72) Автор(ы):

Поляков Л.А.,
Татаринов А.Н.,
Монастырев Ю.А.,
Огородников С.Г.

(73) Патентообладатель(и):

Комбинат “Электрохимприбор”

(54) СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ ЦИРКОНИЯ В ЭЛЕКТРОМАГНИТНОМ СЕПАРАТОРЕ С ИСПОЛЬЗОВАНИЕМ ИСТОЧНИКА ИОНОВ


(57) Реферат:

Изобретение может быть использовано для получения высокообогащенных изотопов циркония в промышленных масштабах. Рабочее вещество – тетрафторид циркония – помещают в тигель источника ионов. Нагревают до парообразного состояния. Пары ионизируют в газоразрядной камере под действием электронной эмиссии с термокатода. Формируют ионные пучки электродами ионно-оптической системы, разделяют и фокусируют их в магнитном поле. Отношение тока на приемник к току на настроечный электрод, расположенный между коробками Zr-91 и Zr-92, поддерживают от 150 до 200. Угол для фокальной плоскости ионного пучка к оси приемника 39°, глубина коробок приемника увеличена в 1,5 раза. По окончании процесса приемники снимают. Съем изотопов производят методом анодного травления. Коэффициент улавливания по изотопам,%: Zr-90 55; Zr-91 62; Zr-92 70; Zr-94 69; Zr-96 59. Обогащение по этим изотопам 87-99,4%. 1 з. п. ф-лы, 1 табл.


Изобретение относится к технологии электромагнитного разделения изотопов химических элементов, а точнее к электромагнитному разделению изотопов циркония.

Изобретение наиболее эффективно может быть использовано для промышленного электромагнитного разделения стабильных изотопов циркония: циркония-90, циркония-91, циркония-92, циркония-94, циркония-96.

Известен способ разделения изотопов циркония, применяемый для промышленного электромагнитного разделения изотопов, предусматривающий нагрев тигля с рабочим веществом и газоразрядной камеры тепловым излучением от нагревателей активного сопротивления до образования пара рабочего вещества, ионизация молекул пара в газоразрядной камере источника под действием электронной эмиссии с термокатода, формирование ионного пучка электродами ионно-оптической системы, разделение и фокусирование магнитным полем пучков изотопов в соответствии с массой изотопов и улавливание ионов коробками приемника (Н.А. Кащеев, В. А. Дергачев. Электромагнитное разделение изотопов и изотопный анализ.- М.: Энергоатомиздат, 1989).

Недостатком указанного способа является то, что он не подходит или малоэффективен для разделения химических элементов, когда в качестве рабочего вещества используют их слаболетучие или высоколетучие химические соединения, или которые сами испаряются при очень низких или высоких температурах.

Другим недостатком известного способа разделения изотопов циркония в электромагнитном сепараторе с использованием источника ионов является то, что технический результат не удовлетворителен ввиду получения низкого обогащения улавливаемых изотопов и низкого коэффициента улавливания по причине недостаточной степени фокусировки изотопных пучков, а также обратного вылета изотопов из коробок приемника ввиду их незначительной глубины. Одновременно высокое давление паров тетрахлорида циркония в разделительной камере (особенно из-за высокой температуры ее стенок вследствие их нагрева одно- и многозарядными ионными пушками не полностью ионизированных молекул рабочего вещества) приводит к попаданию ZrCl4 в коробки приемника и, как следствие, – к изотопному загрязнению коробок.

Технический результат изобретения – улучшение фокусировки, увеличение обогащения разделяемых изотопов циркония и улавливания ионных пучков.

Поставленная цель достигается тем, что в качестве рабочего вещества используют тетрафторид циркония (ZrF4), а степень фокусировки, определяемую отношением тока на приемник к току на настроечный электрод, расположенный между коробками Zr-91 и Zr-92, поддерживают в пределах 150-200. При этом угол наклона фокальной плоскости пучка ионов к оси приемника устанавливают равным 39o, а глубину коробок увеличивают в 1,5 раза.

Рабочее вещество-ZrF4-имеет более низкое давление насыщенных паров, обладает невысокой гигроскопичностью, не разлагается в процессе нагрева, не реагирует с конструкционными материалами и образует давление паров, достаточное для поддержания устойчивого горения дуги разряда в диапазоне температур 550-650oC. Использование в качестве рабочего вещества тетрафторида циркония и изменение глубины и угла установки коробок приемника позволили улучшить фокусировку, увеличить обогащение разделяемых изотопов циркония и улавливание ионных пучков.

Проведенный анализ общедоступных источников информации об уровне техники не позволил выявить техническое решение, тождественное заявленному, на основании чего делается вывод о неизвестности последнего, т.е. соответствии представленного в настоящей заявке изобретения критерию “новизна”.

Сопоставительный анализ заявленного решения с известными техническими решениями позволил выявить, что представленная совокупность отличительных признаков неизвестна для специалиста в данной области и не следует явным образом из известного уровня техники, на основании чего делается вывод о соответствии представленного в настоящей заявке изобретения критерию “изобретательский уровень”.

Для пояснения изобретения ниже представлен пример осуществления способа разделения изотопов циркония в электромагнитном сепараторе с использованием источника ионов. Для эксперимента использовался малый двухкамерный электромагнитный сепаратор “Е-7” комбината “Электрохимприбор”, г.Лесной, Свердловской области. Навеску тетрафторида циркония размещали в тигле из стали марки 12Х18Н10Т источника ионов. После установки источника и пятикоробчного приемника в разделительную камеру сепаратора производили откачку камеры вакуумными насосами до давления (1-2,5)10-3 Па и высоковольтную тренировку источника до напряжения 31-32 кВ.

С целью получения электронного пучка в газоразрядной камере источника подавали напряжения на катодный блок, обеспечивающие: ток через нить накала – 70-75 А, напряжение между нитью и термокатодом – 0,8-1,0 кВ, ток эмиссии – 0,5-0,6 А. При токе дугового разряда 2,0-3,5 А и напряжении разряда 120-250 В осуществлялась ионизация паров рабочего вещества, образование которых происходило при мощности нагревателя газоразрядной камеры 450-500 Вт и мощности нагревателя тигля 250-350 Вт.

Образующиеся ионы циркония с помощью ионно-оптической системы вытягивались через щель газоразрядной камеры и формировались в ионный пучок, который под действием ускоряющего напряжения и постоянного магнитного поля 2400 Э в камере разделялся на пять ионных пучков изотопов в соответствии с массами ионов. Данные пучки изотопов фокусировались магнитным полем в фокальной плоскости, в которой помещались входы в коробки приемника.

После накопления приемники вынимали из разделительной камеры, методом анодного травления производили съем изотопов из коробок, полученный изотопнообогащенный раствор анализировали на обогащение и перерабатывали до конечного продукта.

В процессе экспериментального и опытно-промышленного разделения на малом двухкамерном электромагнитном сепараторе “Е-7” и промышленном электромагнитном сепараторе “СУ-20” комбината “Электрохимприбор”, г.Лесной, Свердловской области в общей сложности получено:
– изотопа Zr-90 с обогащением 99,2% – 325 г;
– изотопа Zr-91 с обогащением 95,3% – 80 г;
– изотопа Zr-92 с обогащением 97,2% – 138 г;
– изотопа Zr-94 с обогащением 98,2% – 138 г;
– изотопа Zr-96 с обогащением 86,2% – 21 г.

В таблице для сравнения приведены основные параметры существующего способа разделения изотопов циркония по прототипу и по заявляемому техническому решению, а также коэффициенты улавливания и обогащение по изотопам.

Сравнение данных, приведенных в таблице, показывает, что некоторое снижение производительности за счет ионного тока на приемник и коэффициента использования времени установки полностью компенсируется за счет увеличения коэффициентов улавливания ионных пучков изотопов.

Таким образом, предложенный способ разделения изотопов циркония в электромагнитном сепараторе с использованием источника ионов по сравнению с существующими методами показал свою высокую эффективность в получении технико-экономического результата. Использование на практике заявляемого технического решения позволяет улучшить фокусировку ионных пучков, увеличить обогащение и улавливание разделяемых изотопов циркония.

Это дает возможность эффективно использовать указанный способ для промышленного электромагнитного разделения изотопов циркония и получения изотопов: Zr-90, Zr-91, Zr-92, Zr-94, Zr-96 с более высоким обогащением без снижения производительности установки.

Реализация заявленного технического решения возможна на существующем оборудовании без дополнительного обучения персонала навыкам работы.

Формула изобретения


1. Способ разделения изотопов циркония в электромагнитном сепараторе с использованием источника ионов, включающий размещение рабочего вещества в тигле источника ионов, нагрев рабочего вещества до парообразного состояния, ионизацию паров рабочего вещества в газоразрядной камере источника под действием электронной эмиссии с термокатода, формирование ионного пучка электродами ионно-оптической системы, разделение и фокусирование ионных пучков изотопов в магнитном поле, улавливание ионов коробками приемника, отличающийся тем, что в качестве рабочего вещества используют тетрафторид циркония, а отношение тока на приемник к току на настроечный электрод, расположенный между коробками Zr-91 и Zr-92, поддерживают в пределах 150 – 200.

2. Способ по п. 1, отличающийся тем, что угол для фокальной плоскости пучка ионов к оси приемника устанавливают равным 39oC, а глубину коробок приемника увеличивают до 160 мм.

РИСУНКИ

Рисунок 1, Рисунок 2

Categories: BD_2160000-2160999