(21), (22) Заявка: 2006114247/06, 27.04.2006
(24) Дата начала отсчета срока действия патента:
27.04.2006
(46) Опубликовано: 10.03.2008
(56) Список документов, цитированных в отчете о поиске:
RU 2249540 C1, 10.04.2005. RU 2247843 C2, 20.10.2004. RU 2126903 C1, 27.02.1999. RU 2252329 C1, 20.05.2005. GB 2228977 A, 12.09.1990. US 4794755 A, 03.01.1989.
Адрес для переписки:
111116, Москва, ул. Авиамоторная, 2, ФГУП “ЦИАМ им. П.И. Баранова”, отдел Интеллектуальной собственности
|
(72) Автор(ы):
Черноморский Вадим Семенович (RU), Белкин Юрий Самуилович (RU)
(73) Патентообладатель(и):
Федеральное государственное унитарное предприятие “Центральный институт авиационного моторостроения имени П.И. Баранова” (RU)
|
(54) СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ
(57) Реферат:
Изобретение относится к области автоматического управления газотурбинным двигателем. При отказе какого-либо одного из датчиков параметров воздуха на входе в двигатель проводят “виртуальное” измерение сигнала отказавшего датчика. Для этого предварительно формируют функциональную зависимость между давлением в двигателе и частотой вращения в приведенных координатах. Для приведения используют соотношения: для приведения давления – соотношение Рпр=1,033 Р/Р1, где Рпр – приведенное значение давление двигателя, Р – давление в двигателе на входе в двигатель, P1 – давление воздуха, и для приведения частоты вращения – соотношение где nпр – приведенное значение частоты вращения, n – частота вращения, T1 – температура воздуха на входе. При “виртуальном” измерении сигнала отказавшего датчика сначала определяют приведенное значение одного из этих параметров по сигналу работающего датчика параметра воздуха на входе в двигатель, определяют соответствующее ему значение другого приведенного параметра по функциональной зависимости и вводят его значение в другое соотношение для приведения, а затем вычисляют по нему значение сигнала отказавшего датчика и вычисленное значение вводят в систему автоматического управления для формирования заданных значений регулируемых параметров. Технический результат – восстановление информации отказавших датчиков температуры или давления на входе в двигатель для повышения надежности работы ГТД. 3 з.п. ф-лы, 1 ил.
Изобретение относится к области автоматического управления газотурбинным двигателем.
Изобретение преимущественно может быть использовано в системах автоматического управления газотурбинными двигателями летательных аппаратов, например самолетов.
Изобретение может быть использовано также в системах автоматического управления газотурбинными двигателями любого иного назначения.
Общеизвестно, что для управления газотурбинным двигателем (ГТД) используют информацию, полученную с датчиков термогазодинамических параметров и частоты вращения ротора.
Известны системы управления, в которых заданные значения регулируемых параметров корректируются по сигналам температуры (T1) и давления (P1) воздуха на входе в ГТД (Теория автоматического управления силовыми установками летательных аппаратов, под ред. А.А.Шевякова. М.: Машиностроение, 1976, стр.30-37).
Так на двигателях 4-ого поколения РД-33, АЛ-31 для самолетов МИГ-29 и СУ-27 осуществлена программа управления по законам nк=f(T1), TT=f(T1), nв=f(T1), где nк – частота вращения компрессора, nB – частота вращения вентилятора, ТT – температура газа за турбиной. Коррекция частоты вращения ротора ГТД (n) по Т1 рассмотрена в книге “Теория автоматического управления силовыми установками летательных аппаратов” под редакцией Шевякова А.А. М.: Машиностроение. 1976, стр.30-37.
В этих случаях отказы датчиков T1 и P1 могут привести к аварийным ситуациям: либо недопустимо повысятся частота вращения и температура газа ТT, либо произойдет их провал и падение тяги двигателя. Для парирования этих отказов предлагается “виртуальное” измерение сигналов T1 и P1 для использования этих измерений в САУ ГТД.
Известны методы “виртуального” измерения параметров ГТД при отказах датчиков термогазодинамических параметров ГТД с заменой их датчиками других параметров, косвенно связанных с отказавшими (см., например, “Идентификация систем управления авиационных ГТД” под редакцией В.Т.Дедеша. М.: Машиностроение, 1984, стр.127).
Известны системы управления с бортовой имитационной моделью ГТД, которая позволяет формировать сигналы параметров ГТД, замер которых затруднен или невозможен, например тяга двигателя, запасы газодинамической устойчивости.
Однако эти подходы не позволяют идентифицировать отказы датчиков T1 и P1 т.к. эти параметры не зависят от термогазодинамических параметров ГТД, по которым можно восстановить информацию об отказавших датчиках, как в известных системах управления.
Известны способы управления полетом летательного аппарата (самолета) с газотурбинным двигателем, при котором управление осуществляют в соответствии с встроенным в систему управления алгоритмом управления, включающим значения основных регулируемых параметров, содержащих частоту вращения турбины компрессора (патент РФ №2249540, МКИ В64С 13/08, опуб. 2005.06.27). 3аданные значения основных регулируемых параметров формируются по сигналам датчиков температуры или давления воздуха на входе в ГТД перед турбиной.
В известных технических решениях отсутствует восстановление информации отказавших датчиков температуры или давления воздуха на входе в двигатель, что снижает надежность работы ГТД.
Задачей предлагаемого изобретения является повышение надежности работы ГТД при отказах датчиков температуры или давления воздуха на входе в двигатель.
Технический результат – восстановление информации отказавших датчиков температуры или давления на входе в двигатель.
Поставленная задача решается тем, что в способе управления газотурбинным двигателем, при котором измеряют параметры воздуха: температуру и давление, на входе в двигатель, давление в двигателе и частоту вращения ротора двигателя соответствующими датчиками температуры, давления и частоты вращения, и осуществляют управление двигателем в соответствии с алгоритмом, использующим сигналы датчиков параметров воздуха на входе для формирования заданных значений регулируемых параметров системы автоматического управления, при отказе какого-либо одного из датчиков параметров воздуха на входе в двигатель, проводят “виртуальное” измерение сигнала отказавшего датчика, для чего предварительно формируют, функциональную зависимость между давлением в двигателе и частотой вращения в приведенных координатах, при этом для приведения используют соотношения: для приведения давления – соотношение Рпр=1,033 Р/P1, где Рпр – приведенное значение давление двигателя, Р – давление в двигателе, P1 – давление воздуха, и для приведения частоты вращения – соотношение , где nпр – приведенное значение частоты вращения, n – частота вращения, T1 – температура воздуха на входе, и, при “виртуальном” измерении сигнала отказавшего датчика, сначала определяют приведенное значение одного из этих параметров по сигналу работающего датчика параметра воздуха на входе в двигатель, определяют соответствующее ему значение другого приведенного параметра по функциональной зависимости и вводят его значение в другое соотношение для приведения, а затем вычисляют по нему значение сигнала отказавшего датчика и вычисленное значение вводят в систему автоматического управления для формирования заданных значений регулируемых параметров.
Целесообразно, чтобы для газотурбинных двигателей с переменной геометрией проточной части за счет изменения положения регулирующего органа, например направляющих аппаратов компрессора, функциональную зависимость в приведенных координатах формировали бы при различных положениях регулирующего органа, в виде семейства кривых или аналитической зависимости, а при “виртуальном” измерения сигнала отказавшего датчика дополнительно замеряли текущее положение регулирующего органа и определяли “виртуальное” измерение сигнала отказавшего датчика при замеренном положении регулирующего органа.
При отказе датчика температуры воздуха на входе в двигатель сначала по соотношению для приведения Рпр=1,033 Р/P1, которое содержит измеряемый параметр давления воздуха на входе в двигатель, вычисляют приведенное значение давления, определяют соответствующее приведенному значению Рпр приведенное значение частоты вращения nпр по функциональной зависимости и вводят его в соотношение для приведения , а затем из того же соотношения вычисляют значение сигнала отказавшего датчика температуры на входе в двигатель по формуле T1=288(n/nпр)2, и вычисленное значение T1 вводят в систему автоматического управления для формирования заданных значений регулируемых параметров
При отказе датчик давления воздуха на входе в двигатель сначала по соотношению для приведения , которое содержит измеряемый параметр температуры воздуха на входе в двигатель, вычисляют значение приведенной частоты вращения, определяют соответствующее приведенному значению nпр приведенное значение давления Рпр по функциональной зависимости и вводят его в соотношение для приведения Рпр=1,033 Р/P1, а затем из него вычисляют значение сигнала отказавшего датчика давления на входе в двигатель по формуле P1=1,033 Р/Рпр, и вычисленное значение P1 вводят в систему автоматического управления для формирования заданных значений регулируемых параметров.
В дальнейшем предлагаемое изобретение поясняется чертежом, на котором приведена принципиальная схема устройства для иллюстрации осуществления способа согласно изобретению.
Общеизвестно, что параметры воздуха: температура и давление на входе в ГТД меняются в широких пределах и зависят только от условий полета – Н (высоты) и М – (число Маха).
Восстановление информации отказавших датчиков параметров воздуха на входе в двигатель – температуры T1 или давления P1, предлагается осуществлять, используя законы газодинамического подобия термогазодинамических параметров ГТД.
Приведение выполняется по температуре и давлению воздуха на входе в двигатель. При этом ряд параметров приводятся только по P1 например Рв, Pк, Pт и др., а некоторые только по T1, например n, Тт, Тг,
где n – частота вращения ротора ГТД,
Тг и Тт – температура газа соответственно перед и за турбиной,
Рв – давление воздуха за вентилятором,
Pк – давление воздуха за компрессором,
Pт – давление газа за турбиной.
Так и т.п., где “пр” – индекс приведения.
Известно, что при постоянной геометрии проточной части из условия газодинамического подобия между термогазодинамическими параметрами ГТД существует однозначная зависимость (см., например, Нечаев, Федоров. Теория авиационных ГТД. Том II, М.: Машиностроение, 1978, стр.191 и др).
Например, Ркпр=f1(nпр), Ттпр=f2(nпр) и т.п.
При измерении геометрии проточной части ГТД эти функциональные зависимости изменяются в зависимости от положения органа, меняющего геометрию, например, от положения (нак) направляющего аппарата компрессора.
Тогда Ркпр=f3(nпр, нак), Ттпр=f4(nпр, нак) и т.п.
Эти функциональные зависимости можно построить графически в виде сеток характеристик Ркпр=f(nпр) при различных нак.
В предлагаемом изобретении используются зависимости Ркпр=f3(nпр, нак).
Такой подход представляется продуктивным, т.к. в приведенных термодинамических параметрах присутствуют данные о T1 и P1.
Поэтому располагая зависимостью между двумя приведенными значениями термогазодинамических параметров, например Ркпр и nпр, а также информацией о замеренных значениях этих параметров и значением одного из параметров воздуха на входе в ГТД (T1 или P1), можно определить другой параметр (T1 или P1).
Для этого определяют приведенное значение термогазодинамического параметра, приведение которого осуществляется по сигналу работоспособного датчика, например P1, (отказ датчика Т1), для чего используется замеренное значение Рк и получают
Используя зависимость nкпр=f(Ркпр) определяется nпр, а из условия приведения и располагая замеренным значением n, определяются
Полученную информацию о T1 (при отказе датчика T1) передают в САУ ГТД.
Одна из возможных реализаций предложенного способа управления ГТД по программе n=f(T1) путем изменения подачи топлива в основные камеры сгорания, приведена на чертеже.
Газотурбинный двигатель 3 имеет систему 1 автоматического управления (САУ) и исполнительные органы 2.
На входе в газотурбинный двигатель 3 установлены датчики параметров воздуха – датчик 4 температуры, датчик 5 давления.
Кроме того, установлены датчик 6 давления в компрессоре двигателя, датчик 8 частоты вращения ротора двигателя, датчик 7 положения направляющих аппаратов компрессора нак, блок 9 приведения давления в компрессоре Рк, блок 10 формирования приведенной частоты вращения nпр, блок 11 для вычисления значения сигнала отказавшего датчика, сигнализатор (12), селектор 13, канал 14, блок 15 формирования заданного значения nзад, элемент сравнения (16).
Реализация способа согласно изобретению осуществляется следующим образом.
При штатной работе САУ ГТД на элемент сравнения (16) поступают сигналы с датчика частоты вращения ГТД (8) и с блока формирования заданного значения nзад (15). Разность сигналов (nзад-n) поступает на вход в САУ ГТД (1), где формируется сигнал управления исполнительным органом (2) (расходом топлива).
Заданное значение nзад формируется в блоке (15), на вход которого через селектор (13) подается сигнал с датчика Т1(4) для формирования nзад=f(Т1).
При отказе датчика T1 по сигналу сигнализатора (12) селектор (13) соединяет канал (14) с выходом блока (11) и прерывает связь канала (14) с датчиком T1 (4).
В этом случае заданное значение nзад формируется по “виртуальному” измерению T1, осуществляемому в блоке (11).
Для реализации “виртуального” измерения с ГТД (3) сигналы с датчиков P1 (5) и Pк (6) поступают на вход блока приведения Рк (9), где Р формируется сигнал
Сигналы с блока (9) и с датчика положения направляющих аппаратов компрессора нак (7) поступают в блок формирования nпр (10), где по ранее полученной зависимости Ркпр=f3(nпр, нак) определяют nпр и в виде сигнала подают на вход блока (11), также на вход блока (11) поступает сигнал с датчика n (8).
В блоке (11) из формулы приведения определяется расчетное значение T1, которое через селектор (13) и канал (14) поступает на вход блока (15) для формирования заданного значения частоты вращения.
Таким образом в случае отказа датчика T1 система управления остается работоспособной.
Все вышеизложенное справедливо и для “виртуального” измерения P1 в случае отказа датчика P1. Отличия заключаются в следующем:
– на вход блока (9) для формирования сигнала поступают сигналы датчиков n и T1;
– на вход блока (10) поступает сигнал nпр для определения Ркпр;
– на вход блока (11) поступают сигналы Ркпр и с датчика Рк, и рассчитывается значение P1 из формулы приведения Ркпр.
Известно, что условие газодинамического подобия режимов незначительно нарушается из-за влияния так называемых “вторичных факторов” (неавтомодельность течения воздуха по тракту ГТД, тепловая нестандартность и т.п.) (Нечаев, Федоров. Теория авиационных ГТД. Том II. М.: Машиностроение, 1978 стр.191).
Это приводит к необходимости несколько корректировать функциональную зависимость Ркпр=f(nпр, нак). Предлагаемая схема позволяет ввести соответствующую коррекцию в блоке (11), используя на штатном режиме сравнение фактического значения T1 замеренного датчиком (4) с расчетным (самообучающаяся система), что повышает точность “виртуального” измерения Т1 на 8%.
Для ГТД гражданской авиации с большой степенью двухконтурности (более 4) представляется целесообразным использовать сигналы давления воздуха за вентилятором (Рв), т.к. геометрия проточной части вентилятора неизменна (например, двигатель ПС-90А для самолета ИЛ-96), а изменение проточной части компрессора слабо скажется на характеристиках вентилятора, например, Рвпр=f(nвпр). В этом случае не потребуется замерять положение нак, что повысит точность “виртуального” измерения T1.
Формула изобретения
1. Способ управления газотурбинным двигателем, при котором измеряют параметры воздуха, температуру и давление на входе в двигатель, давление в двигателе и частоту вращения ротора двигателя соответствующими датчиками температуры, давления и частоты вращения и осуществляют управление двигателем в соответствии с алгоритмом, использующим сигналы датчиков параметров воздуха на входе для формирования заданных значений регулируемых параметров системы автоматического управления, отличающийся тем, что при отказе какого-либо одного из датчиков параметров воздуха на входе в двигатель проводят “виртуальное” измерение сигнала отказавшего датчика, для чего предварительно формируют функциональную зависимость между давлением в двигателе и частотой вращения в приведенных координатах, при этом для приведения используют соотношения: для приведения давления соотношение Pпр=1,033 Р/Р1, где Рпр – приведенное значение давление двигателя, Р – давление в двигателе, P1 – давление воздуха, и для приведения частоты вращения соотношение где nпр – приведенное значение частоты вращения, n – частота вращения, T1 – температура воздуха на входе, и при “виртуальном” измерении сигнала отказавшего датчика сначала определяют приведенное значение одного из этих параметров по сигналу работающего датчика параметра воздуха на входе в двигатель, определяют соответствующее ему значение другого приведенного параметра по функциональной зависимости и вводят его значение в другое соотношение для приведения, а затем вычисляют по нему значение сигнала отказавшего датчика и вычисленное значение вводят в систему автоматического управления для формирования заданных значений регулируемых параметров.
2. Способ по п.1, отличающийся тем, что для газотурбинных двигателей с переменной геометрией проточной части за счет изменения положения регулирующего органа, например направляющих аппаратов компрессора, функциональную зависимость в приведенных координатах формируют при различных положениях регулирующих органов в виде семейства кривых или аналитической зависимости, а при “виртуальном” измерении сигнала отказавшего датчика дополнительно замеряют текущее положение регулирующего органа и определяют “виртуальное” измерение сигнала отказавшего датчика при замеренном положении регулирующего органа.
3. Способ по п.1, отличающийся тем, что при отказе датчика температуры воздуха на входе в двигатель сначала по соотношению для приведения Рпр=1,033 Р/Р1, которое содержит измеряемый параметр давления воздуха на входе в двигатель, вычисляют приведенное значение давления, определяют соответствующее приведенному значению Рпр приведенное значение частоты вращения nпр по функциональной зависимости и вводят его в соотношение для приведения а затем из того же соотношения вычисляют значение сигнала отказавшего датчика температуры на входе в двигатель по формуле T1=288(n/nпр)2 и вычисленное значение T1 вводят в систему автоматического управления для формирования заданных значений регулируемых параметров.
4. Способ по п.1, отличающийся тем, что при отказе датчика давления воздуха на входе в двигатель сначала по соотношению для приведения которое содержит измеряемый параметр температуры воздуха на входе в двигатель, вычисляют значение приведенной частоты вращения, определяют соответствующее приведенному значению nпр приведенное значение давления Рпр по функциональной зависимости и вводят его в соотношение для приведения Pпр=1,033 Р/Р1, а затем из него вычисляют значение сигнала отказавшего датчика давления на входе в двигатель по формуле P1=1,033 Р/Рпр и вычисленное значение Р1 вводят в систему автоматического управления для формирования заданных значений регулируемых параметров.
РИСУНКИ
PC4A – Регистрация договора об уступке патента СССР или патента Российской Федерации на изобретение
Прежний патентообладатель:
Федеральное государственное унитарное предприятие “Центральный институт авиационного моторостроения имени П.И. Баранова”
(73) Патентообладатель:
Российская Федерация в лице Министерства промышленности и торговли Российской Федерации
Договор № РД0058395 зарегистрирован 17.12.2009
Извещение опубликовано: 27.01.2010 БИ: 03/2010
|