Патент на изобретение №2315118
|
||||||||||||||||||||||||||||
(54) СПОСОБ ПРОИЗВОДСТВА РУЛОННОЙ ХОЛОДНОКАТАНОЙ СТАЛИ
(57) Реферат:
Изобретение относится к прокатному производству, в частности к технологии получения тонколистовой холоднокатаной стали в рулонах. Для улучшения потребительских свойств рулонной холоднокатаной стали и уменьшения расхода валков при прокатке на реверсивном стане осуществляют прокатку полос толщиной 0,6-2,0 мм с уменьшением удельного натяжения при увеличении толщины полосы в валках с шероховатостью поверхности их бочек в пределах Ra=0,7-1,2 мкм, затем проводят отжиг рулонов и выдержку их под колпаком с отключенными горелками в течение 12 часов при массе рулонов Q15 т и в течение 8 часов при Q<15 т. 1 табл.
Изобретение относится к прокатному производству и может быть использовано при изготовлении тонколистовой холоднокатаной стали в рулонах. Тонколистовую сталь толщиной 0,6…2,0 мм обычно получают при холодной прокатке на двухклетевых реверсивных станах, аналогичных стану 1700 ОАО “Магнитогорский металлургический комбинат”. Одним из требований, предъявляемым к рабочим валкам стана холодной прокатки, является оптимизация микрогеометрии (шероховатости) их бочек, так как от этого зависит как качество листового проката, так и длительность кампании рабочих валков. Полученные холоднокатаные рулоны подвергают отжигу в колпаковых печах при заданных температурах и времени выдержки, что обеспечивает требуемые механические свойства стали. Технология производства рулонной холоднокатаной стали (в том числе ее отжига) достаточно подробно описана, например, в справочнике под ред. В.И.Зюзина “Технология прокатного производства”, кн. 2. М.: Металлургия, 1991, с.840-664 и с.684-689. Известен способ производства холоднокатаных стальных листов, получаемых традиционным способом, при котором непрерывный отжиг ведут с увеличенным натяжением полосы при определенной средней скорости движения полосы (см. Япон. заявку №6455336 кл. С21D 8/04. опубл. 02.03.89 г.). Однако этот способ неприемлем для производства холоднокатаной рулонной стали, отжигаемой в колпаковых печах. Наиболее близким аналогом к заявляемому способу является технология производства рулонной холоднокатаной стали, описанная в “Справочнике прокатчика” Ю.В.Коновалова и др. М.: Металлургия, 1977, с.112-113 и с.130-131. Эта технология включает прокатку с натяжением полосы на реверсивном стане и последующий отжиг прокатных рулонов с выдержкой их под колпаком в течение определенного времени и характеризуется тем, что продолжительность выдержки рулонов зависит от ширины полосы и наибольшей массы рулона в садке. Недостатками известной технологии являются неопределенность микрогеометрии (величины шероховатости бочек) валков и, как следствие, неудовлетворительное качество поверхности полосы (появление таких дефектов как “излом”, “загрязненность”, “разнотолщинность”), а также относительно большая длительность выдержки металла под колпаком, что приводит к снижению производительности печей, увеличению расхода валков, и к ухудшению потребительских свойств тонколистовой стали. Технической задачей изобретения является улучшение потребительских свойств рулонной холоднокатаной стали за счет исключения таких дефектов, как “излом”, “загрязненность”, “разнотолщинность” и уменьшение расхода валков при прокатке, а также увеличение производительности колпаковой печи. Для решения указанной задачи в способе производства рулонной холоднокатаной стали, включающем прокатку с натяжением полосы на реверсивном стане и последующий отжиг прокатаных рулонов с выдержкой их под колпаком в течение определенного времени, прокатку полос толщиной 0,6…2,0 мм осуществляют с уменьшением удельного натяжения при увеличении толщины полосы в валках с шероховатостью поверхности их бочек в пределах Ra=0,7…1,2 мкм, а выдержку металла под колпаком ведут с выключением горелок в течение 12 часов при массе рулонов Q15 т и в течение 8 часов при Q<15 т. Сущность заявляемого технического решения заключается, во-первых, в оптимизации микрогеометрии (шероховатости) рабочих валков реверсивного стана; во-вторых, в принятии величины удельного натяжения полос при прокатке обратно-пропорциональной их толщине и, в-третьих, в определенной длительности выдержки отожженного металла под колпаком печи с выключенными горелками. Действительно, как показали опыты повышение шероховатости валков (обычно она определяется величиной высоты Ra микронеровностей поверхности бочки валка) отрицательно сказывается на их износостойкости и приводит к увеличению расхода валков, ухудшению потребительских свойств тонколистовой стали. Увеличение же длительности выдержки рулонов под колпаком приводит к значительному уменьшению производительности колпаковой печи, приводит к росту загрязненности поверхности металла. Так, прокатка полос разной толщины с одинаковой величиной удельного натяжения приводит к изменению величины абсолютного натяжения (оно возросло с увеличением толщины металла), что изменяет давление металла на валки с увеличением продольной разнотолщинности полос (т.е. – с ухудшением их геометрии) и приводит к ухудшению потребительских свойств тонколистовой стали. Слишком малая высота Ra микронеровностей (менее 0,7 мкм) рабочих валков уменьшает шероховатость прокатанного металла до недопустимых величин, что в некоторых случаях приводит к “слипанию” витков отжигаемых рулонов и ухудшению потребительских свойств тонколистовой стали. При Ra>1,2 мкм увеличивается износ валков, следовательно, увеличивается расход валков. Уменьшение выдержки металла в рулонах под колпаком приводит к свариванию витков, к ухудшению потребительских свойств тонколистовой стали. Увеличение времени выдержки увеличивает рабочее время цикла, приводит к снижению производительности печей, к увеличению «загрязненности» поверхности металла, к ухудшению потребительских свойств тонколистовой стали. Была также выявлена четкая зависимость продолжительности этой выдержки от массы отдельных рулонов (см. выше): она возрастает с увеличением массы рулона. В опытах опробовалась и известная технология, взятая в качестве ближайшего аналога. При этом величина шероховатости бочек валков была в пределах Ra=1,3…1,7 мкм, величина удельного натяжения при прокатке не изменялась с изменением толщины полос, а время выдержки металла составляло 14…16 час при Q15 т и 9…11 час при Q<15 т. Длительность кампании рабочих валков в этих опытах была меньше, чем при реализации предлагаемого способа, в среднем, на 20%, а отсортировка металла с повышенной загрязненностью поверхности возросла почти в два раза. Пример конкретного выполнения При прокатке полосовой стали толщиной 0,6…2,0 мм на реверсивном двухклетевом стане 1700 этого цеха варьировали величину удельного натяжения полос разных толщин, а также опробовали рабочие валки с Ra=0,5…2,0 мкм. При отжиге рулонов в колпаковых печах изменяли время выдержки металла под колпаком (с выключением горелок).
Наилучшие результаты: улучшение потребительских свойств рулонной холоднокатаной стали, минимальный выход металла с загрязненной поверхностью и максимальная износостойкость валков – получены при использовании заявляемого способа. Отклонения в любую сторону от вышеприведенных рекомендуемых параметров способа ухудшали полученные результаты. Таким образом, опытная проверка подтвердила приемлемость найденного технического решения для выполнения поставленной задачи и его преимущества перед известным объектом.
Формула изобретения
Способ производства рулонной холоднокатаной стали, включающий прокатку с натяжением полосы на реверсивном стане и последующий отжиг рулонов с выдержкой их под колпаком с отключенными горелками, отличающийся тем, что при увеличении толщины полос от 0,6 до 2,0 мм прокатку осуществляют с уменьшением удельного натяжения в валках с шероховатостью поверхности их бочек в пределах Ra=0,7-1,2 мкм, а выдержку рулонов под колпаком ведут в течение 12 ч при массе рулонов Q15 т и в течение 8 ч при Q<15 т.
|
||||||||||||||||||||||||||||