Патент на изобретение №2313583
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ
(57) Реферат:
Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. Технический результат изобретения – повышение склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости. Выплавляют сталь при следующем соотношении компонентов, мас.%: углерод 0,002-0,015, кремний 0,005-0,050, марганец 0,05-1,0, фосфор 0,005-0,09, сера 0,003-0,020, алюминий 0,02-0,07, азот 0,002-0,007, титан 0,0005-0,040, ниобий не более 0,060, железо и неизбежные примеси – остальное, при выполнении следующих условий: Сэф=[С]-СTi-CNb
Изобретение относится к области металлургии, к способам производства холоднокатаной стали с высокими вытяжными свойствами для холодной штамповки, и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. В последнее время кроме требований обеспечения высокой штампуемости все больше предъявляются требования к повышенному уровню прочности, в частности, в результате упрочнения при сушке лакокрасочных покрытий на готовых деталях – ВН-эффекта (bake-hardening effect). При этом в зависимости от оборудования конкретных заводов, главным образом, от режимов термической обработки подбирается определенная система легирования стали и остальные технологические параметры производства. Так, при использовании отжига в колпаковых печах для обеспечения требуемой величины ВН-эффекта часто легируют сталь повышенным количеством фосфора, что может приводить к охрупчиванию границ зерен. Поэтому очень важно выбрать оптимальный химический состав стали и другие технологические параметры, чтобы обеспечить наиболее высокий комплекс свойств стали при ее минимальной стоимости. Известен способ производства холоднокатаной стали для глубокой вытяжки, включающий выплавку стали, содержащей, мас.%: углерод – 0,001÷0,006 кремний – 0,002÷0,020 марганец – 0,07÷0,30 фосфор – 0,005÷0,020 сера – 0,005÷0,010 алюминий – 0,015÷0,050 азот – 0,002÷0,006 титан – 0,02÷0,08 ниобий – 0,005÷0,060 кислород – 0,001÷0,005 железо и неизбежные примеси – остальное, при этом суммарное содержание алюминия и титана составляет 0,07÷0,12%, отношение содержания алюминия к содержанию кислорода составляет не менее 5,0, а минимальное содержание титана рассчитывают из соотношения (Timin)=3,43(N)+2,4(S), разливку, горячую прокатку, смотку полос в рулоны при 710÷730°С, травление, холодную прокатку, отжиг в колпаковых печах при 700°С и дрессировку. Как вариант, после травления и холодной прокатки проводят цинкование, непрерывный отжиг при 850°С и дрессировку. Способ направлен на повышение штампуемости стали, независимо от режима термической обработки и нанесения защитного покрытия, повышение коррозионной стойкости (Патент РФ №2233905, МПК С22С 38/14, 10.08.2004 г.). Недостатком такого способа является отсутствие гарантированной величины ВН-эффекта, особенно после отжига в колпаковых печах, а также сравнительно высокая стоимость стали, связанная с необходимостью обеспечения сверхнизкого содержания углерода, легирования титаном и ниобием. Известен способ производства листовой стали, включающий непрерывную разливку слябов из стали, содержащей, мас.%: углерод – 0,002÷0,007 кремний – 0,005÷0,050 марганец – 0,08-0,16 алюминий – 0,01-0,05 титан – 0,05÷0,12 фосфор – не более 0,015 сера – не более 0,010 хром, никель, медь – не более 0,04 каждого азот – не более 0,006 железо – остальное, нагрев слябов до 1150÷1240°С, горячую прокатку с температурой конца прокатки не ниже 870°С, охлаждение водой до 550÷730°С, смотку в рулоны, травление, холодную прокатку с суммарным обжатием не менее 70%, отжиг в колпаковой печи при 700÷750°С в течение 11÷34 часов и дрессировку. Способ направлен на улучшение вытяжных свойств и увеличение выхода кондиционной листовой стали (Патент РФ №2197542, МПК С21D 8/04, 27.01.2003 г.). Недостаток способа: высокое содержание титана, низкое содержание фосфора не позволяют обеспечить упрочнение стали в результате ВН-эффекта. Наиболее близким к заявляемому является способ производства холоднокатаных полос из сверхнизкоуглеродистой стали, включающий выплавку стали, содержащую, мас.%: углерод – 0,006÷0,10 марганец – 0,01÷0,15 фосфор азот алюминий ниобий – 0,031÷0,06 сера железо и неизбежные примеси – остальное, разливку, нагрев слябов до 1150÷1200°С, горячую прокатку с температурой конца прокатки при 910÷920°С, смотку при 740÷750°С, холодную прокатку с суммарным обжатием не менее 70%, нагрев полосы со скоростью 10÷20°С/с до температуры отжига, определяемой в зависимости от отношения Nb/C по формулам: при 3,1 Tотж=7,52·(Nb/C)2+45,55·Nb/C+791, °C, при 4,65 Tотж=1,75·(Nb/C)2+33,81·Nb/C+730, °С, где Nb и С – содержание ниобия и углерода в стали, мас.%, выдержку при температуре отжига в течение 50-60 с и охлаждение со скоростью 15÷25°С/с до 340÷360°С. При необходимости на холоднокатаные полосы наносят покрытия. Способ направлен на стабилизацию комплекса механических свойств при обеспечении категории весьма особо сложной вытяжки с одновременным получением упрочняющего эффекта (ВН-эффекта) не менее 40 МПа (Патент РФ №2212457, МПК С21D 8/04, 20.09.2003 г. – прототип). Недостатком данного способа является возможность его применения только для непрерывных термических агрегатов. При термической обработке в колпаковых печах, когда температура отжига не превышает 730÷750°С, требуемая величина ВН-эффекта не обеспечивается. Задачей данного изобретения является оптимизация химического состава и других технологических параметров производства холоднокатаной стали с обеспечением технического результата в виде повышения склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости. Технический результат достигается тем, что в известном способе производства холоднокатаной стали для холодной штамповки, включающем выплавку стали, содержащей углерод, марганец, фосфор, серу, алюминий, азот, ниобий, железо и неизбежные раскислители и примеси, разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку и рекристаллизационный отжиг, при необходимости нанесения покрытия, согласно изобретению выплавляют сталь, дополнительно содержащую титан при следующем соотношении компонентов, мас.%: углерод – 0,002÷0,015 кремний – 0,005÷0,050 марганец – 0,05÷1,0 фосфор – 0,005÷0,09 сера – 0,003÷0,020 алюминий – 0,02÷0,07 азот – 0,002÷0,007 титан – 0,0005÷0,040 ниобий – не более 0,060 железо и неизбежные примеси – остальное, при выполнении следующих условий: Сэф=[С]-CTi-CNb где Сэф – эффективное содержание углерода, не связанного титаном или ниобием; [С] – общее содержание углерода в стали; CTi – содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию азота [N] [Ti]/[N]<3,43 CTi=0, при [Ti]/[N] CNb – содержание углерода, связанного ниобием, CNb=Nb/7,74; Сэф+0,05[Р] где [Р] – содержание фосфора в стали, также тем, что смотку полосы в рулоны ведут при температуре не более 650°С, а также тем, что рекристаллизационный отжиг ведут в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: нагрев полосы до температуры 450÷500°С со скоростью не менее 50°С/час с последующим замедлением нагрева, по крайней мере до 550÷600°С со скоростью не более 30°С/час, далее со скоростью не более 50°С/час до температуры отжига. Сущность изобретения сводится к следующему. Для обеспечения высокой штампуемости и обеспечения определенной величины ВН-эффекта необходимо содержание в феррите свободного углерода 6÷20 ppm. В случае непрерывного отжига высокие скорости охлаждения препятствуют выделению углерода в виде цементита и обеспечить требуемое содержание углерода в твердом растворе возможно путем обеспечения определенных соотношений между углеродом, титаном и ниобием (с учетом содержания азота и серы). При медленном охлаждении в процессе колпакового отжига значительная часть углерода может выделиться в виде цементита и требуемая величина ВН-эффекта не получится. Поэтому одним из способов обеспечения ВН-эффекта в случае колпакового отжига является обеспечение перед началом охлаждения более высокого содержания углерода, чем в случае непрерывного отжига, не менее 30 ppm. Другим способом обеспечения требуемой величины ВН-эффекта при достаточно низком содержании углерода в твердом растворе перед началом ускоренного охлаждения – от 6 ppm является легирование стали фосфором, который, снижая скорость диффузии углерода, способствует его сохранению в твердом растворе в количестве, достаточном для проявления ВН-эффекта. Выполнение условия (1) Сэф=[С]-CTi-CNb Следует отметить, что выполнение условия (2) повысит уровень свойств и величину ВН-эффекта и при колпаковом и при непрерывном отжигах стали, в том числе с нанесением покрытия. Ограничение нижнего предела содержания углерода связано с тем, что при дальнейшем уменьшении содержания углерода снижается склонность к ВН-эффекту. Ограничение минимального содержания азота связано с его участием в выделении нитрида алюминия при колпаковом отжиге, влияющем благоприятно на штампуемость. Нижний предел содержания фосфора, серы, кремния и марганца в стали определяется возможностями существующих на сегодняшний день сталеплавильных технологий. Дальнейшее снижение содержания этих элементов не вызывает существенного улучшения потребительских свойств, но приводит к существенному удорожанию металлопродукции. Увеличение содержания углерода, азота, серы, кремния и марганца, а также фосфора выше верхних пределов формулы изобретения приводит к ухудшению штампуемости. Минимальное содержание алюминия в стали определяется необходимостью достаточного раскисления стали и связывания азота в нитрид алюминия. Ограничение верхнего предела содержания алюминия связано с его отрицательным влиянием на штампуемость из-за увеличения количества нитридов алюминия и, следовательно, структурной неоднородности. Минимальное содержание титана определяется требованием выделения некоторого количества азота в виде нитрида титана. Увеличение содержания титана и ниобия выше верхнего предела, помимо отрицательно влияния на штампуемость, снижения величины ВН-эффекта, приводит к удорожанию стали. Ограничение температуры смотки – не более 650°С связано с необходимостью сохранения в твердом растворе после горячей прокатки азота, который в дальнейшем, при отжиге, выделяясь в виде мелкодисперсных частиц нитрида алюминия, благоприятно влияет на структуру, текстуру и штампуемость стали. Увеличение скорости нагрева при рекристаллизационном отжиге до температуры 450÷500°С не менее 50°С/час связано с необходимостью подавить выделение частиц ALN до начала рекристаллизации, а снижение скорости нагрева в интервале температур 450÷500°С до 550÷600°С не более 30°С/час – с необходимостью обеспечить более полное выделение частиц ALN на начальных стадиях рекристаллизации. Ограничение скорости последующего нагрева не более 50°С/час, а также минимального значения температуры отжига 700°С связано с необходимостью создания условий для более полного протекания процессов собирательной рекристаллизации, что также требуется для обеспечения высокой штампуемости. Примеры конкретного выполнения способа. Семь плавок низкоуглеродистых сталей были выплавлены в 300-тонном конвертере ОАО «Северсталь» и разлиты на установке непрерывной разливки в слябы сечением 250×1290 мм. Горячую прокатку слябов на полосы толщиной 3,2 мм проводили на стане «2000». Температура конца прокатки составляла 850÷890°С. Полосы после душирования сматывали в рулоны при температуре 560÷700°С. После травления и холодной прокатки на полосы толщиной 0,9 мм полосы подвергали рекристаллизационному отжигу в лабораторных условиях по режиму, имитирующему отжиг в агрегате цинкования, или в самом агрегате цинкования (АГЦ) или в колпаковой печи при температуре 700÷730°С. После дрессировки со степенью обжатия 1,0% проводили комплексные механические испытания проката с определением величины ВН-эффекта. Вариант 1 – сталь, содержащая 0,005% углерода, 0,009% кремния, 0,16% марганца, 0,045% фосфора, 0,010% серы, 0,04% алюминия, 0,004% азота, 0,015% титана, 0,019% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,005-0,00032-0,00245=0,00223%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00223+0,00225=0,00448%>0,003%, то есть соответствует формуле изобретения. Отжиг проводили по режиму, соответствующему отжигу в агрегате цинкования: нагрев до температуры отжига 840°С со скоростью 5°С/с, выдержка 60 с; охлаждение до 450°С со скоростью 10°С/с, выдержка 3 с, охлаждение на воздухе (вариант соответствует п.1 формулы изобретения). Вариант 2 – сталь, содержащая 0,006% углерода, 0,008% кремния, 0,18% марганца, 0,040% фосфора, 0,008% серы, 0,03% алюминия, 0,004% азота, 0,015% титана, 0,019% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,00032-0,00245=0,00323%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00323+0,00200=0,00523%>0,003%, то есть соответствует формуле изобретения. Отжиг проводили по режиму в агрегате цинкования: по режиму, описанному в варианте 1, но с нанесением горячецинкового покрытия (вариант соответствует п.1 формулы изобретения). Вариант 3 – сталь, содержащая 0,008% углерода, 0,010% кремния, 0,65% марганца, 0,011% фосфора, 0,012% серы, 0,04% алюминия, 0,005% азота, 0,02% титана, 0,03% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,008-0,0007-0,0039=0,0034%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,0034+0,00055=0,00395%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 560°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°C со скоростью около 35°С/час (вариант полностью соответствовал п.п.1-3 формулы изобретения). Вариант 4 – сталь, содержащая 0,004% углерода, 0,013% кремния, 0,19% марганца, 0,050% фосфора, 0,009% серы, 0,02% алюминия, 0,003% азота, 0,01% титана, 0,025% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,004-0,0032=0,0008%>0,0006%, то есть соответствует формуле изобретения Вариант 5 – сталь, содержащая 0,006% углерода, 0,011% кремния, 0,15% марганца, 0,015% фосфора, 0,006% серы, 0,04% алюминия, 0,04% ниобия, 0,002% азота, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,0052=0,0008%>0,0006%, то есть соответствует формуле изобретения (CTi=0, так как сталь не содержит титан); выражение Сэф+0,05[Р]=0,0008+0,00075=0,00155%<0,003%, то есть не соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значению выражения (2)). Вариант 6 – сталь, содержащая 0,006% углерода, 0,013% кремния, 0,15% марганца, 0,060% фосфора, 0,007% серы, 0,05% алюминия, 0,015% титана, 0,042% ниобия, 0,004% азота, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,00032-0,0054=0,00028%<0,0006%, то есть не соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00028+0,003=0,00328%>0,003%, то есть соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значению выражения (1)). Вариант 7 – сталь, содержащая 0,0045% углерода, 0,010% кремния, 0,16% марганца, 0,040% фосфора, 0,009% серы, 0,03% алюминия, 0,004% азота, 0,008% титана, 0,020% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-СTi-CNb=0,0045-0,0026=0,0019%>0,0006%, то есть соответствует формуле изобретения Механические испытания образцов холоднокатаного проката из стали указанных плавок проводили на электромеханической испытательной машине INSTRON-1185. Размеры образца составляли 20×120 мм. Испытания проводили в полуавтоматическом режиме с тензометром продольной деформации (база тензометра 12,5 мм). Скорость растяжения составляла 10 мм/мин. В случае кривых растяжений без физического предела текучести величину предела текучести определяли по показаниям тензометра с учетом линейного участка диаграммы растяжения (кроме этого, для контроля использовали анализ машинной диаграммы растяжения). Коэффициент деформационного упрочнения n определяли в диапазоне деформации от 10 до 17%. Коэффициент нормальной пластической анизотропии r определяли при остановке испытаний (при достижении 17%) путем замера вручную ширины образца (в трех сечениях). Для образцов шириной 20 мм относительное удлинение Испытания для определения упрочнения стали при сушке лакокрасочного покрытия (ВН-эффект) проводили в следующей последовательности: 1) образцы растягивали до величины деформации 2%, которую определяли по экстензометру (база 26 мм); при этом определяли 2) образцы помещали в печь, нагретую до температуры 170±10°С, и выдерживали в течение 20 минут; 3) образцы испытывали на растяжение, определяя величину ВН-эффекта, как разницу между пределом текучести Результаты механических испытаний приведены в таблице. Определяли основные механические характеристики: предел текучести Для стали по вариантам 1-4 получены требуемые показатели штампуемости и величины ВН-эффекта. Для варианта 5 несмотря на присутствие свободного углерода в твердом растворе перед началом охлаждения, из-за низкого содержания фосфора углерод выделяется при охлаждении в виде цементита, что приводит к отсутствию склонности стали к ВН-эффекту. Для варианта 6 из-за невыполнения условия (1) еще до начала охлаждения основная часть углерода оказывается связанной в карбид ниобия или титана, что приводит к отсутствию ВН-эффекта. Для варианта 7 высокая температура смотки и низкая скорость охлаждения до температур начала рекристаллизации приводят к выделению азота в виде нитрида алюминия еще до начала рекристаллизации, что отрицательно влияет на штамппуемость: снижаются значения r и относительного удлинения. Таким образом, только холоднокатаная сталь, полученная по вариантам 1, 3, 4 и горячеоцинкованная по варианту 2, соответствующим формуле изобретения, имеют высокие показатели штампуемости и величины ВН-эффекта. То есть использование настоящего предложения существенно повышает величину ВН-эффекта стали даже после рекристаллизационного отжига в колпаковой печи при сохранении высокой штампуемости.
Формула изобретения
1. Способ производства холоднокатаной стали для холодной штамповки, включающий выплавку стали, содержащей углерод, марганец, фосфор, серу, алюминий, азот, ниобий, железо и неизбежные раскислители и примеси, разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг и, при необходимости, нанесение покрытия, отличающийся тем, что выплавляют сталь, дополнительно содержащую титан, при следующем соотношении компонентов, мас.%:
при выполнении условий Сэф.=[С]-СTi-СNb где Сэф. – эффективное содержание углерода, не связанного титаном или ниобием, [С] – общее содержание углерода в стали, СTi – содержание углерода, связанного титаном, причем СTi=0 при [Ti]/[N]<3,43 и CTi=([Ti]-3,43N)/4 при [Ti]/[N] СNb – содержание углерода, связанного ниобием, CNb=Nb/7,74, [Р] – содержание фосфора в стали. 2. Способ по п.1, отличающийся тем, что смотку полосы в рулоны ведут при температуре не более 650°С. 3. Способ по п.2, отличающийся тем, что рекристаллизационный отжиг ведут в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: сначала до 450-500°С со скоростью не менее 50°С/ч, затем по крайней мере до 550-600°С со скоростью не более 30°С/ч, далее со скоростью не более 50°С/ч до температуры отжига.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||