Патент на изобретение №2312915
|
||||||||||||||||||||||||||||
(54) БРОНЕВОЙ ДЕФОРМИРУЕМЫЙ АЛЮМИНИЕВЫЙ СПЛАВ
(57) Реферат:
Изобретение относится к металлургии и может быть использовано при изготовлении брони броненесущей техники для защиты от воздействия средств поражения. Сплав содержит следующие компоненты, мас.%: цинк 4,7-5,3, магний 2,1-2,6, марганец 0,05-0,15, хром 0,12-0,25, титан 0,03-0,10, цирконий 0,07-0,12, бериллий 0,0002-0,005, железо 0,05-0,35, кремний 0,05-0,25, натрий 0,0001-0,0008, медь не более 0,2, алюминий – остальное. Данный сплав позволяет повысить однородность структуры брони и ее сварных швов, обеспечить стабильную бронестойкость сварных швов брони независимо от расположения свариваемых элементов, исключить откол с тыльной стороны брони при непробитии снарядом, обеспечить высокую живучесть брони, включая ее использование в условиях сочетания с внешней динамической защитой бронекорпусных и броненесущих механизированных объектов.
Изобретение относится к металлургии и может найти применение при изготовлении брони броненесущей техники (корпуса и элементы автомобилей, боевых машин и кораблей и т.д.) для защиты от воздействия средств поражения. Специфическими свойствами брони, определяемыми условиями эксплуатации объекта защиты, является устойчивость самого материала брони и его сварных соединений к воздействию пуль, снарядов различного калибра, мин, их осколков и т.п., а также сочетаемость с другими видами защиты. Поэтому к свариваемым металлическим сплавам, используемым для изготовления брони, помимо общих требований по механической прочности, устойчивости к общей коррозии и коррозии под напряжением, также предъявляются требования по бронестойкости, живучести и т.д. как самого металла, так и его сварных швов. Известен деформируемый алюминиевый сплав, содержащий следующие компоненты в мас.%: цинк 5,4-6,2; магний 2,51-3,0; марганец 0,1-0,3; хром 0,12-0,25; титан 0,03-0,10; цирконий 0,07-0,12; бериллий 0,0002-0,005; медь Известный сплав, упрочняемый закалкой и старением, обладает следующими механическими характеристиками: Известен деформируемый алюминиевый сплав, содержащий следующие компоненты в мас.%: цинк 4,7-5,3; магний 2,1-2,6; марганец 0,05-0,15; хром 0,12-0,25; титан 0,03-0,10; цирконий 0,07-0,12; бериллий 0,0002-0,005; медь Известный сплав, упрочняемый закалкой и старением, обладает следующими механическими характеристиками: Задачей изобретения является создание броневого деформируемого алюминиевого сплава, обеспечивающего в сочетании с динамической защитой бронекорпусной и броненесущей техники повышение живучести брони при воздействии современных мощных средств поражения, а также повышение устойчивости сварных соединений брони к общей коррозии и коррозии под напряжением. Техническим результатом изобретения является повышение однородности структуры брони и ее сварных швов, обеспечение стабильной бронестойкости сварных швов брони из сплава по изобретению независимо от расположения свариваемых элементов, исключение откола с тыльной стороны брони при непробитии снарядом, обеспечение высокой живучести брони, включая ее использование в условиях сочетания с внешней динамической защитой бронекорпусных и броненесущих механизированных объектов. Сущностью изобретения является то, что броневой деформируемый алюминиевый сплав включает цинк, магний, марганец, хром, титан, цирконий, бериллий, железо, кремний, натрий, медь и алюминий при следующем соотношении компонентов, мас.%: цинк 4,7-5,3; магний 2,1-2,6; марганец 0,05-0,15; хром 0,12-0,25; титан 0,03-0,10; цирконий 0,07-0,12; бериллий 0,0002-0,005; железо 0,05-0,35; кремний 0,05-0,25; натрий 0,0001-0,0008; медь не более 0,2; алюминий – остальное. Содержание натрия в количестве 0,0001-0,0008 мас.% в броневом сплаве по изобретению при сохранении высоких механических характеристик способствует уменьшению неоднородности структуры сплава после деформирования и термообработки в виде слоистости (шиферности), а также способствует повышению изотропности материала и релаксации напряжений в зоне протяженного сварного шва. Изготовление брони из сплава по изобретению включает получение расплава, его литье полунепрерывным способом в кристаллизатор скольжения или в электромагнитный кристаллизатор, порезку слитков на слябы, их гомогенизацию, фрезеровку, стандартное деформирование ковкой, прокаткой или прессованием, термообработку заготовок и, при необходимости, сварку. Требуемую концентрацию натрия в сплаве по изобретению получают путем выстаивания расплава в миксере под флюсом, например криолитовым. При изготовлении поковок применяются III и IV схемы ковки. Термообработка заготовок включает закалку и искусственное старение при температуре 100°С в течение 24 часов, причем старение включает дополнительную выдержку при температуре 165-175°С в течение 3-4 часов. Сварку заготовок ведут по стандартной технологии. Конструкцию брони, включающую протяженные сварные соединения, дополнительно выдерживают при температуре 165-175°С в течение 3-4 часов. Служебные характеристики брони из сплава по изобретению оценивали по отсутствию слоистости (шиферности) основного металла, металла околошовной зоны и шва сварного соединения после дополнительной выдержки при температуре 165-175°С в течение 3-4 часов; по коэффициенту изотропности К Механические характеристики сплава по изобретению после закалки и старения практически не отличаются от механических характеристик сплава прототипа: Представленные результаты показывают достижение поставленного технического результата и возможность использования сплава по изобретению при изготовлении брони для бронекорпусной и броненесущей техники в сочетании с активной динамической защитой.
Формула изобретения
Броневой деформируемый алюминиевый сплав, включающий цинк, магний, марганец, хром, титан, цирконий, бериллий, железо, кремний, медь и алюминий, отличающийся тем, что он дополнительно содержит натрий при следующем соотношении компонентов, мас.%:
|
||||||||||||||||||||||||||||

0,2; железо
в=510-560 МПа,
=7-10%, Ак=0,7-1 кгм/см2. Известный сплав используется в производстве крупногабаритных большетолщинных цельноалюминиевых объектов машиностроения. Однако сварные швы конструкций из данного сплава (угловые и, особенно, прямоугольные) имеют некоторую склонность к коррозии под напряжением, что в сочетании с температурно-линейными деформациями конструкций может привести к трещинообразованию на открытых торцах угловых сварных соединений. Поэтому при длительной эксплуатации, особенно в условиях воздействия знакопеременных нагрузок, живучесть сварных конструкций бронекорпусных и броненесущих механизированных объектов, изготовленных из данного сплава, может снизиться. Кроме того, броня, изготовленная из данного сплава, не обеспечивает достаточного уровня стойкости при воздействии снарядов и не может быть использована одновременно с активной динамической защитой механизированных объектов в виде подрываемых блоков взрывчатого вещества.