Патент на изобретение №2311987

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2311987 (13) C2
(51) МПК

B22D1/00 (2006.01)
B22D7/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.11.2010 – может прекратить свое действие

(21), (22) Заявка: 2005124741/02, 03.08.2005

(24) Дата начала отсчета срока действия патента:

03.08.2005

(43) Дата публикации заявки: 10.02.2007

(46) Опубликовано: 10.12.2007

(56) Список документов, цитированных в отчете о
поиске:
SU 348288 А, 05.02.1977. RU 2175279 C1, 27.10.2001. SU 493289 A, 30.11.1975. GB 1293979 A, 25.10.1972. GB 1547922 A, 04.06.1979.

Адрес для переписки:

455049, Челябинская обл., г. Магнитогорск, ул. Доменщиков, 5/1, кв.60, В.П. Ногтеву

(72) Автор(ы):

Ногтев Валерий Павлович (RU)

(73) Патентообладатель(и):

Ногтев Валерий Павлович (RU)

(54) ШЛАКООБРАЗУЮЩАЯ СМЕСЬ ДЛЯ ТЕПЛОИЗОЛЯЦИИ МЕТАЛЛА В ПРОМЕЖУТОЧНОМ КОВШЕ

(57) Реферат:

Изобретение относится к металлургии, в частности к составам теплооизолирующих шлакообразующих смесей, используемых при непрерывной разливке стали. Шлакообразующая смесь содержит ингредиенты при следующем соотношении, мас.%: углеродсодержащий материал 15-25, шпат полевой 75-85. Изобретение позволяет улучшить физико-химические свойства смеси, т.е их ассимилирующую способность, обеспечить технологичность непрерывной разливки стали и повысить качество непрерывнолитых заготовок. 1 з.п. ф-лы, 2 табл.

Предполагаемое изобретение относится к черной металлургии, а именно к составам теплоизолирующих шлакообразующих смесей для использования в промежуточном ковше при непрерывной разливке стали.

Известна шлакообразующая смесь для непрерывной разливки стали, содержащая углеродистый материал, шпат плавиковый, соду кальцинированную, шпат полевой, песок и шлакопортландцемент (Патент РФ №2175878, 7 B22D 11/111, 2001). Данная смесь в промковше практически полностью расплавляется и не обеспечивает теплоизоляцию жидкого металла.

Известна шлакообразующая смесь для защиты стали в промежуточном ковше в процессе разливки (Патент РФ №2064363, кл. B22D 11/00, 1996 г.). Смесь состоит из углеродсодержащего материала, слюды и глины бентонитовой. При расплавлении смеси образуется вязкий шлак системы SiO2 – Al2О3. Из-за высокого начального содержания Al2О3 (20-25%) ухудшаются ассимилирующие свойства шлака по отношению к непрерывно всплывающим из металла оксидам алюминия. Шлак твердеет с образованием твердой корки – “крыши”.

Известна также теплоизолирующая смесь для непрерывной разливки стали, применяемая в промежуточном ковше МНЛЗ (Патент РФ №2175279, кл. 7 B22D 11/111). Смесь содержит 4-25% углеродсодержащего материала, 4-90% рисовой лузги и остальное – кремнеземсодержащий материал (ксм).

Недостатками данной смеси при использовании в промковше являются переход ее шлакового расплава из жидкого в твердое состояние при основности более 3,0, а при основности менее 0,6 наблюдается резкое снижение ассимилирующей способности шлака, очевидно вследствие отсутствия или низкого содержания в окисной системе оксидов щелочно-земельных металлов.

Наиболее близкой по технической сущности и достигаемому результату является теплоизолирующая смесь, включающая 10-20% углеродсодержащего материала (графита аморфного) и 80-90% материала на основе оксидов кремния (перлита) (Авт. св. СССР №348288, B22D 7/00, 1970 г.).

Данная смесь отличается высокими теплоизолирующими свойствами. Существенным недостатком смеси являются недостаточно высокие ассимилирующие свойства из-за низкого (5,6-9,0%) содержания в ней оксидов щелочно-земельных металлов. В перлите суммарное содержание R2O=7-10%. Образующаяся в зоне контакта смеси с жидким металлом тонкая жидкая шлаковая пленка быстро насыщается всплывающими из металла оксидами алюминия. Пленка из жидкого состояния переходит в гетерогенное и далее в твердое, не усваивая новые оксиды. При этом затрудняется и становится невозможным проведение некоторых технологических операций (ввод термопары в жидкую сталь, смена защитной трубы сталеразливочного ковша и др.), то есть нарушается технологичность непрерывной разливки стали. Качество непрерывнолитой заготовки снижается.

Технический эффект при использовании заявляемого состава теплоизолирующей шлакообразующей смеси заключается в улучшении физико-химических свойств смеси (в повышении ассимилирующей способности), обеспечении технологичности непрерывной разливки стали и повышении качества непрерывнолитых заготовок.

Указанный технический эффект достигается тем, что шлакообразующая смесь, содержащая материал на основе оксидов кремния и углеродсодержащий материал, в качестве материала на основе оксидов кремния содержит шпат полевой при следующем соотношении ингредиентов, мас.%:

– углеродсодержащий материал 15-25
– шпат полевой 75-85

В качестве углеродсодержащего материала применяются графит аморфный (зольность 15-20%), пыль установки сухого тушения кокса (пыль УСТК) с содержанием углерода более 97%.

В качестве материала на основе оксидов кремния применяется шпат полевой со следующим средним химическим составом (мас.%): SiO2=58,6; Al2O3=22,8; Na2O=7,5; К2O=7,5; CaO=4,8.

Анализ научно-технической и патентной литературы показывает отсутствие совпадений отличительных признаков заявляемого состава шлакообразующей смеси с признаками известных технических решений. На основании этого анализа можно сделать вывод о соответствии заявляемого технического решения критериям “изобретательский уровень” и “новизна”.

Углеродсодержащий материал в составе смеси повышает ее теплоизоляционные свойства, а при сгорании компенсирует часть тепловых потерь металла.

При содержании в смеси углеродсодержащего материала менее 15% ухудшаются условия утепления поверхности металла в промковше и образуется твердая шлаковая корка, препятствующая проведению некоторых технологических операций, а при его содержании более 25% возможно существенное науглероживание стали с выходом за пределы марочного содержания углерода.

Полевой шпат в составе смеси при ее расплавлении образует нижний слой жидкого шлака системы SiO2 – Al2О3 – R2O, представляющий жидкую стекловидную массу, хорошо ассимилирующую и удерживающую всплывающие из металла неметаллические включения. За счет этого обеспечивается лучшее качество металла по загрязненности неметаллическими включениями. Верхний слой смеси остается частично подплавленным благодаря наличию регулятора плавления – углеродсодержащего материала, выполняя защитную теплоизоляционную функцию.

При содержании в смеси полевого шпата менее 75% и углеродсодержащего материала более 25% снижается количество шлакового расплава, повышается его температура плавления и вязкость и снижается ассимилирующая способность расплава – на поверхности расплава образуется твердая шлаковая корка.

При содержании в смеси полевого шпата более 85% и углеродсодержащего материала менее 15% ассимилирующая способность расплава не увеличивается. Верхний сыпучий слой смеси практически полностью расплавляется и не выполняет теплоизоляционную функцию.

При выходе содержания ингредиентов в смеси за указанные пределы ухудшаются физико-химические свойства смеси, нарушается технологичность непрерывной разливки стали и понижается качество непрерывнолитых заготовок.

Сравнительные испытания смесей проводили в промежуточном ковше емкостью 25 т при непрерывной разливке углеродистых, высокоуглеродистых и низколегированных сталей. Скорость разливки составляла 1,8-2,4 м/мин.

Для оценки качества металла от отлитых сортовых заготовок с сечением 152×170 мм отбирали поперечные макротемплеты, и качество макроструктуры оценивали по величине точечного загрязнения неметаллическими включениями.

Оценивали также расход смесей в промковш на 1 т отлитой стали.

Компонентные составы заявляемой смеси (п.1-3) и известной (п.4 – средний состав) приведены в таблице 1.

Температуру плавления смесей (температуру полусферы) определяли в микропечи с платиновой подложкой, а вязкость – методом вращающегося цилиндра.

В таблице 2 представлены свойства шлакообразующих смесей, характеристика их шлаковых расплавов, данные по качеству макроструктуры металла и технологические данные.

Размеры частиц всех смесей составляли 0,05-0,1 мм. Смеси вводили в промковш вручную через отверстия в его крышке – в отверстия для ввода термопар и в центральное отверстие для защитной погруженной сталеразливочной трубы. Оценивали расход смесей и визуально – рассматривали поведение смеси в промковше.

При использовании новой смеси №1 было отлито 22 плавки на один промковш. В конце серии начинала образовываться шлаковая корка. Расход смеси несколько увеличили и в среднем он составил 0,29 кг/т отлитой стали.

Средняя величина точечной неоднородности металла составила 0,88 балла.

При использовании новой смеси №3 было отлито 24 плавки на один промковш. На последних плавках начинали образовываться отдельные твердые участки шлака в удаленных местах промковша от мест введения смеси. Расход смеси составил 0,23 кг/т отлитой стали. Средняя величина точечной неоднородности металла составила 1,03 балла.

При использовании новой смеси №2 (оптимального состава) были отлиты 3 серии плавок по 25-30 плавок в серию. Замечаний по поведению смеси и шлака в промковше не было. Средний расход смеси составил 0,25 кг/т отлитой стали. Величина точечной неоднородности в среднем составила 0,83 балла.

При использовании известной смеси №4 было отлито в серию 14 плавок. Уже на седьмой плавке начинала появляться твердая толстая шлаковая корка, препятствовавшая введению в металл термопары. Увеличение расхода смеси до 0,55 кг/т (в среднем расход составил 0,42 кг/т) не предотвратило образования шлаковой “крыши”. Использование смеси №4 прекратили. Точечная неоднородность металла на последних плавках в среднем составила 1,82 балла.

Таким образом, данные сравнительных испытаний по работе смесей в промковше и результаты по качеству металла (по величине точечной неоднородности) показали преимущество новых смесей.

Экономический эффект от использования шлакообразующей смеси нового состава заключается в возможности стабилизации технологии непрерывной разливки стали и повышении качества непрерывнолитых заготовок, а также в увеличении серийности отлитых плавок на один промковш.

Таблица 1
Компонентные составы смесей
Ингредиенты Состав, мас.%
1 2 3 4
Пыль УСТК 15 25
Графит аморфный 20 15
Шпат полевой 85 80 75
Перлит 85
Таблица 2
Данные сравнительных испытаний
Показатели Состав
1 2 3 4
Температура плавления смеси 1335 1470
Содержание в смеси, мас.% углерода 12,5 16,5 20,5 12,7
двуокиси кремния 52,7 48,6 41,9 62,9
окиси кальция 4,3 3,9 3,6 2,1
окиси алюминия 20,5 18,9 17,1 9,4
оксидов щелочно-земельных металлов 13,5 12,5 11,3 5,2
Основность смеси, CaO/SiO2 0,08 0,08 0,09 0,03
Расход смеси, кг/т стали 0,29 0,23 0,25 0,42
Точечная неоднородность металла, балл 0,88 0,83 1,03 1,82

Формула изобретения

1. Шлакообразующая смесь для теплоизоляции металла в промежуточном ковше, содержащая материал на основе оксида кремния и углеродсодержащий материал, отличающаяся тем, что в качестве материала на основе оксида кремния используют шпат полевой при следующем соотношении ингредиентов, мас.%:

углеродсодержащий материал 15-25
шпат полевой 75-85

2. Шлакообразующая смесь по п.1, отличающаяся тем, что в качестве углеродсодержащего материала используют графит аморфный или пыль установки сухого тушения кокса.

Categories: BD_2311000-2311999