Патент на изобретение №2311957
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) КАТАЛИЗАТОР ОКИСЛИТЕЛЬНОЙ ОЧИСТКИ ГАЗОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ
(57) Реферат:
Изобретение относится к области защиты окружающей среды от токсичных компонентов отходящих газов, а именно к катализатору, способу приготовления катализатора для окислительной очистки газов от углеводородов и монооксида углерода. Описан катализатор с носителем из оксидированной нержавеющей стали, содержащий рутений в количестве 0,05-0,15 мас.% или рутений в том же количестве в сочетании с одним из металлов: платина или палладий в количестве, не превышающем 0,05 мас.%, и способ приготовления катализатора. Технический результат – высокая степень очистки газов от углеводородов при высокой механической прочности и низкой стоимости катализатора. 2 н.п. ф-лы, 2 табл.
Изобретение относится к области защиты окружающей среды от токсичных компонентов отходящих газов, а именно к катализатору, способу приготовления катализатора для окислительной очистки газов от углеводородов и монооксида углерода. Применение в катализаторах глубокого окисления углеводородов и монооксида углерода благородных металлов, таких как платина и палладий [Попова Н.М. Катализаторы очистки газовых выбросов промышленных производств. М.: Химия, 1991. С.47-54; Алхазов Т.Г., Марголис Л.Я. Глубокое каталитическое окисление органических веществ. М.: Химия, 1985. С.192; Химическая технология. 2001. №3. С.9-17], обеспечивает высокую активность при довольно низких температурах (250-400°С), термостабильность и значительный срок службы катализатора. Существенным недостатком этих катализаторов является высокая стоимость, определяемая стоимостью входящих в их состав дорогостоящих платины и палладия. Известны катализаторы, содержащие рутений или сочетание рутения и платины, с алюмооксидным [RU, патент №2001111013, кл. B01D 53/62, B 01 J 23/38, 20.05.2003] или графитоподобным углеродным носителем [RU, патент №2191070, кл. B01J 23/40, 23/46, 21/18, 37/02, B01D 53/62, С01В 31/20, 20.10.2002] для очистки водородсодержащих газов от оксида углерода. Применение этих катализаторов ограничено одним технологическим процессом окислительной очистки газов. Наиболее близким к предлагаемому является катализатор для окисления углеводородсодержащих газов, содержащий платину на носителе, представляющем собой оксидированную нержавеющую сталь, при соотношении компонентов, мас.%: Pt 0,02-0,11, носитель остальное [RU, патент №2063804, кл. B01J 23/89, 37/03]. Катализатор благодаря использованию металлического носителя обладает механической прочностью и проявляет высокую активность в процессах полного окисления углеводородов при температурах 250-400°С. Недостаток катализатора в том, что он содержит дорогостоящую платину, что значительно увеличивает его стоимость. Наиболее близким к предлагаемому является способ приготовления катализатора для окисления углеводородсодержащих газов [RU, патент №2063804, кл. B01J 23/89, 37/03], заключающийся в том, что металлический носитель, представляющий собой дробленую стружку из нержавеющей стали, предварительно оксидируют, а затем наносят платину путем погружения носителя в водный раствор, содержащий 4,5·10-4-6,0·10-4 моль/л [Pt(NH3)4]Cl2 и 0,005 моль/л гидроксида калия, при температуре 170-210°С в замкнутом объеме в течение 150-180 мин и отношении насыпного объема носителя к объему раствора, равном 1:13-1:14. Способ не может быть использован для приготовления предлагаемого катализатора. Недостаток его в использовании химического соединения дорогостоящей платины, что значительно увеличивает стоимость получаемого катализатора. В основу изобретения положена задача разработки катализатора с металлическим носителем для окислительной очистки газов и способа его приготовления, обеспечивающих высокую степень очистки при низких температурах, высокую механическую прочность и низкую стоимость катализатора. Задача решается тем, что в предлагаемом катализаторе, включающем благородный металл и оксидированную нержавеющую сталь, новым является то, что катализатор содержит рутений в количестве 0,05-0,15 мас.% или рутений в том же количестве в сочетании с одним из металлов: платина или палладий в количестве, не превышающем 0,05 мас.%. В способе приготовления катализатора окислительной очистки газов путем погружения предварительно оксидированной нержавеющей стали в водный раствор, содержащий 0,005 моль/л гидроксида калия и аммиачный комплекс платинового металла и находящийся в замкнутом объеме при температуре 170-210°С на 150-180 мин, новым является то, что используемый водный раствор содержит один из аммиачных комплексов рутения, например [Ru(NH3)6]Cl2 или [Ru3O2(NH3)14]Cl6, или вместе с комплексом рутения содержит комплекс одного из металлов: платины, например [Pt(NH3)4]Cl2, или палладия, например [Pd(NH3)4]Cl2. Концентрации комплексов и соотношение насыпного объема носителя к объему раствора обеспечивают требуемое содержание платиновых металлов в катализаторе. Способ приготовления катализатора осуществляется следующим образом. Носитель в виде дробленой стружки из нержавеющей стали марки Х18Н10Т или Х12Н10Т предварительно оксидируют. Способ оксидирования нержавеющей стали соответствует прототипу [RU, патент №2063804, кл. B01J 23/89, 37/03]. Оксидированную нержавеющую сталь помещают в кварцевый или фторопластовый автоклав с водным раствором, содержащим 0,005 моль/л гидроксида калия и один из аммиачных комплексов рутения [Ru(NH3)6]Cl2 или [Ru3O2(NH3)14]Cl6. Для получения биметаллических рутений-платиновых или рутений-палладиевых катализаторов в раствор дополнительно вводят аммиачный комплекс платины [Pt(NH3)4]Cl2 или палладия [Pd(NH3)4]Cl2 соответственно. Концентрации комплексов указаны в табл.1. Отношение насыпного объема носителя к объему раствора равно 1:10-1:11. Раствор продувают в течение 20-30 мин аргоном или азотом для удаления из системы молекулярного кислорода, после чего автоклав герметизируют. Процесс ведут при температуре 180-200°С в течение 150-180 мин в автоклаве при перемешивании. По окончании процесса готовый катализатор вынимают из раствора, промывают дистиллированной водой и сушат на воздухе при комнатной температуре. Удаление кислорода из системы является обязательным условием получения качественных покрытий, так как в его присутствии при термолизе наряду с металлическими рутением, платиной и палладием образуются их малорастворимые соединения переменного состава. Указанные интервалы продолжительности и температуры процесса, концентрация гидроксида калия в растворе являются условиями полного выделения платиновых металлов из растворов их аммиачных комплексов и сохранения носителя. Они определены экспериментально. Конкретные примеры приготовления катализаторов приведены в табл.1. Испытания приготовленных образцов проводили на газохроматографической установке: микромодульный изотермический реактор (объем реакционной зоны катализа 1,5-3,5 см3) с диффузионной ячейкой ввода газоуглеводородной смеси, прибор хроматограф ЛХМ-80 (стальная насадочная колонка 2 м × 3 мм, заполненная Chromaton N-super с НФ 5% SE-30, температура колонок 70°С, газ-носитель – азот). В качестве сырья использовали н-гексан. Условия проведения процесса: 1,5-3,5 см3 испытуемого контакта помещали в реактор, температура реакции – в интервале 300-500°С, скорость подачи сырьевой паровоздушной смеси 250 мл/мин, концентрация н-гексана в исходной паровоздушной смеси составляла 2-3,5 г/м3. Степень окисления н-гексана рассчитывали как соотношение высот пиков углеводорода на хроматограмме до и после реакции окисления и выражали в %. Результаты испытаний приготовленных катализаторов в процессе окисления н-гексана приведены в табл.2. Исходя из данных табл.2, можно сказать, что катализаторы, полученные по описанному выше способу, являются активными в процессах полного окисления углеводородов (н-гексан) при температуре 300-500°С и по активности не уступают катализатору прототипа. Стоимость предлагаемого катализатора окислительной очистки газов с носителем из оксидированной нержавеющей стали снижается по сравнению с платиновым катализатором прототипа благодаря частичной или полной замене дорогостоящих платины и палладия на более дешевый рутений, при этом сохраняется высокая степень очистки газов от углеводородов и высокая механическая прочность катализатора.
Формула изобретения
1. Катализатор окислительной очистки газов, содержащий металл платиновой группы и оксидированную нержавеющую сталь, отличающийся тем, что катализатор содержит рутений в количестве 0,05-0,15 мас.% или рутений в том же количестве в сочетании с одним из металлов: платина или палладий в количестве, не превышающем 0,05 мас.%. 2. Способ приготовления катализатора окислительной очистки газов путем погружения предварительно оксидированной нержавеющей стали в водный раствор, содержащий 0,005 моль/л гидроксида калия и аммиачный комплекс платинового металла, и находящийся в замкнутом объеме при температуре 180-200°С, на 150-180 мин, отличающийся тем, что предварительно оксидированную нержавеющую сталь погружают в раствор одного из аммиачных комплексов рутения, или в раствор комплекса рутения и аммиачного комплекса одного из металлов: платины или палладия, концентрацией и соотношением насыпного объема носителя к объему раствора, обеспечивающими получение катализатора по п.1.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||