Патент на изобретение №2309969

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2309969 (13) C1
(51) МПК

C09K3/10 (2006.01)
C08J3/20 (2006.01)
C08L23/22 (2006.01)
C08L23/16 (2006.01)

C08L23/12 (2006.01)
C08K13/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 29.11.2010 – прекратил действие, но может быть восстановлен

(21), (22) Заявка: 2006103711/04, 08.02.2006

(24) Дата начала отсчета срока действия патента:

08.02.2006

(46) Опубликовано: 10.11.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2099383 C1, 20.12.1997. SU 1735340 A1, 23.05.1992. RU 2059683 C1, 10.05.1996. RU 2103306 C1, 27.01.1998. Справочник резинщика. /Под ред. П.И.ЗАХАРЧЕНКО и др. – М.: Химия, 1971, с.102, 185, 186.

Адрес для переписки:

628412, Тюменская обл., г. Сургут, ул. Энергетиков, 14, Сургутский государственный университет, ректору Г.И.Назину

(72) Автор(ы):

Нехорошев Виктор Петрович (RU),
Лапутина Галина Михайловна (RU),
Коновалов Сергей Иванович (RU),
Колесов Александр Владимирович (RU),
Зинина Ольга Павловна (RU),
Нехорошева Александра Викторовна (RU),
Гаевой Константин Николаевич (RU)

(73) Патентообладатель(и):

Сургутский государственный университет (RU),
Закрытое акционерное общество “Гермаст” (RU),
Нехорошев Виктор Петрович (RU)

(54) ТЕРМОПЛАСТИЧНЫЙ ГЕРМЕТИЗИРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

(57) Реферат:

Изобретение относится к нефтехимии и химии высокомолекулярных соединений. Изобретение может быть использовано в машиностроении, в частности в автомобилестроении, для герметизации кузовов, стекол и шасси, а также в строительстве для герметизации межпанельных швов зданий, оконных проемов при монтаже блоков стеклопакетов и их изготовлении и других строительных изделиях. Материал получают предварительной механохимической деструкцией полиизобутилена или бутилкаучука или синтетического тройного этиленпропиленового каучука или их смесей в смесителе при экзотермическом разогреве до 120-140°С. Затем вводят окисленный атактический полипропилен, проводят гомогенизацию в течение 0,1-0,3 ч. Постепенно понижают температуру до 80-90°С введением наполнителей, минерального масла, пигментов, красителей, стеарата кальция. Смесь перемешивают до однородного состояния. Материал обладает высокой липкостью, адгезионно-когезионными свойствами к бетону, металлу, стеклу и минеральным наполнителям, повышенными термостойкостью и сопротивлением к хладотекучести. Способ снижает энергозатраты на получение, повышает эксплуатационные характеристики материалов, 2 н.п. ф-лы, 4 табл.

Изобретение относится к нефтехимии и химии высокомолекулярных соединений, а более конкретно, – к составам герметизирующих материалов и способам их приготовления. Предлагаемый термопластичный герметизирующий материал может использоваться в машиностроении, в частности в автомобилестроении, для герметизации кузовов, стекол и шасси, а также в строительстве для герметизации межпанельных швов зданий, оконных проемов при монтаже блоков стеклопакетов и их изготовлении и др. строительных изделиях.

Известны термопластичные герметизирующие материалы на основе полиизобутилена (ПИБ), используемые в виде мастик и замазок (Николаев А.Ф. Синтетические полимеры и пластические массы на их основе. Л.: Химия, 1966, с.78-85). Герметизирующие материалы получают на основе полиизобутилена П-100 с добавлением фенолформальдегидной смолы, битума, асбеста, талька, сажи, мела, диабазовой муки и др. минеральных наполнителей. В качестве пластификатора используют минеральные масла. Смесь компонентов подвергают горячему смешению в обогреваемом резиносмесителе при 130-150°С в течение 20 минут, после чего горячую массу переносят на нагреваемые фрикционные вальцы для гомогенизации при 60-90°С в течение 5 мин. Вальцевание ПИБ на холоду не производят, так как снижается его молекулярная масса.

Недостатками известных герметизирующих материалов на основе ПИБ являются: низкая адгезионная прочность к металлу, стеклу и бетону; хладотекучесть герметиков препятствует их использованию на вертикальных поверхностях, т.к. они медленно сползают при температуре окружающего воздуха; высокая стоимость герметизирующих материалов связана с использованием в качестве полимерной основы дорогостоящего ПИБ стоимостью 100 тыс.руб./т.

Известны также термопластичные герметизирующие материалы на основе атактического полипропилена (АПП), используемые для герметизации трудносклеиваемых элементов кабеля, и композиции для заполнения внутреннего слоя защитной оболочки кабеля (журнал “Пластические массы”, 1986, №7, с.58-59. Аксененко И.В., Батурина Т.Н., Нехорошев В.П. и др. Герметизирующие материалы на основе АПП). Термопластичные герметизирующие материалы содержат: 50-65 мас.% АПП, 35-50 мас.% ПИБ марки П-20, 30-35 мас.ч. диоксида кремния (аэросил-175) и 15-20 мас.ч. нефтяного масла. Адгезионная прочность герметика с полиэтиленом и резиной при введении АПП повышается, а с металлической пластиной – практически не изменяется. Термопластичные герметизирующие материалы получают смешением компонентов на вальцах при 20-25°С в течение 20-30 мин. Экструдирование смесей проводят на шприц-прессе при 80°С. При изготовлении композиции герметизирующих материалов на вальцах происходит механохимическая деструкция макромолекул АПП, что снижает его молекулярную массу на 20-30%. Кроме этого, в процессе приготовления герметиков наблюдается изомеризация полимерных радикалов и увеличивается их разветвленность. Продукты деструкции АПП формируют адгезионный слой композиции. Термопластичные герметизирующие композиции имеют высокую водостойкость и низкую стоимость.

Недостатками этих герметизирующих композиций является использование дорогого и дефицитного наполнителя на основе специально приготовленного диоксида кремния (аэросил-175), потенциальные ресурсы которого ограничены производственными возможностями, и низкое сопротивление отслаиванию от металла, т.к. полимерная основа композиции неполярная, т.е. не содержит полярных реакционноспособных функциональных групп, способных реагировать с окисной пленкой на поверхности стали.

Наиболее близкой к заявляемому изобретению по составу, свойствам и функциональному применению является герметизирующий состав на основе ПИБ, предназначенный для герметизации швов по границам металл-металл, металл-стекло, стекло-стекло и др., включающий (мас.%): полиизобутилен с молекулярной массой 10000-20000 – 15-40, наполнитель – 50-80, трансформаторное или индустриальное масло – 5-10 (патент РФ №2099383 от 5.07.1995 г. Герметизирующий состав. МКИ6 С09К 3/10, C08L 23/22, C09J 123/22). Герметизирующий состав приготавливают смешиванием ингредиентов на обогреваемых вальцах или смесителе.

Наиболее близкий промышленный способ приготовления термопластичного герметизирующего материала заключается в смешении бутилкаучука (БК) и этиленпропиленового каучука (марки СКЭП или СКЭПТ) с индустриальным маслом и наполнителем в смесителе при нагревании (SU 1735340 A1 – прототип способа).

Недостатками известного способа являются повышенные затраты тепловой энергии, расходуемой на принудительное нагревание резиносмесителя и приготовляемой герметизирующей смеси. Каучуки деструктируют без химического взаимодействия с наполнителем, что ухудшает адгезионные и эксплуатационные свойства герметизирующего материала, например по таким показателям как: хладотекучесть, прочность связи с металлом и бетоном, водопоглощение, сопротивление текучести при температуре выше 100°С.

Задача предлагаемого изобретения – получение термопластичного герметизирующего материала, обладающего высокими липкостью, адгезионно-когезионными свойствами к полярным материалам (бетону, металлу, стеклу и минеральным наполнителям), повышенными термостойкостью и сопротивлением хладотекучести.

Технический результат достигается использованием в составе герметизирующего материала на основе ПИБ и синтетических карбоцепных каучуков, типа бутилкаучука или СКЭПТ, содержащих пластификаторы, красители, наполнители и внутреннюю смазку на основе стеариновой кислоты, дополнительно 1-10 мас.% окисленного АПП (ОАПП) при следующем соотношении ингредиентов (мас.%):

полиизобутилен, бутилкаучук, синтетический тройной
этиленпропиленовый каучук или их смеси 7-30
пластификаторы на основе минеральных масел 6-23
пигменты и красители 0,1-1,0
стеариновая кислота или стеарат кальция 0,5-2,0
наполнители: мел, цемент, тальк, техуглерод, асбест,
битум или их смеси 34-80
окисленный атактический полипропилен 1-10

а также способом получения термопластичных герметизирующих материалов, заключающимся в перемешивании указанных ингредиентов при нагревании, с дозировкой ОАПП в реакционную смесь после проведения механохимической деструкции каучуков в смесителе при экзотермическом разогреве смеси до 120-140°С с последующей гомогенизацией смеси в течение 0,1-0,3 часа, а затем постепенном понижении температуры до 80-90°С путем последовательной дозировки наполнителей, пластификаторов, пигментов, красителей и заключительном перемешивании реакционной смеси до однородного состояния.

Для изготовления термопластичных герметизирующих материалов используют промышленные марки ПИБ, бутилкаучука (изготовитель – Ефремовский завод синтетического каучука), СКЭПТ-50 и ОАПП, изготавливаемый ООО “Атактика” (г.Томск) по качеству соответствующий ТУ 2211-002-02069318-04 “Окисленный атактический полипропилен”.

Ранее ОАПП для изготовления термопластичных герметизирующих материалов не использовался (Нехорошев В.П. Получение и рациональное использование атактического полипропилена (Обзор), – журнал “Пластические массы”, 1995. №5. с.42-47).

ОАПП получают на опытно-промышленной установке окислением расплава АПП кислородом воздуха при 180-250°С в течение 2-5 часов.

Марочный ассортимент ОАПП включает три марки полимера, различающиеся степенью окисления: ОАПП-Н (низкоокисленный), ОАПП-С (среднеокисленный) и ОАПП-В (высокоокисленный). Более подробно получение, свойства и применение ОАПП описаны в статье Нехорошева В.П. и др. Окисленный атактический полипропилен: получение, свойства и применение. – Журнал прикладной химии, 2000. Т.73. вып.6. с.996-999.

ОАПП содержит реакционноспособные полярные гидроксильные, карбонильные группы, которые в процессе приготовления герметизирующего материала химически реагируют с гидроксильными группами на поверхности наполнителей (мел, цемент, тальк, техуглерод), улучшая их совместимость с неполярными каучуками и ПИБ. Олефиновые двойные связи ОАПП реагируют с макрорадикалами каучуков, образовавшимися при проведении их механохимической деструкции в смесителе, образуя привитой сополимер ОАПП + карбоцепные каучуки.

В результате проведения в процессе приготовления герметизирующего материала двух химических реакций ОАПП сначала с каучуками, а затем с наполнителем, обеспечиваются его высокие липкость, адгезионно-когезионные свойства к полярным материалам (бетон, металлы, стекло), повышенные термостойкость и сопротивление хладотекучести. Для изготовления предлагаемого герметизирующего материала используются все выпускаемые три марки ОАПП, но использование ОАПП-С предпочтительнее, т.к. герметизирующий материал приготовленный с ОАПП-С имеет самый высокий комплекс эксплуатационных свойств сочетающийся с хорошей технологичностью при приготовлении герметика и его переработке в изделия.

Показатели качества, используемого в примерах ОАПП трех марок, приведены в табл.1.

Рассмотрим преимущества использования ОАПП в предлагаемом термопластичном герметизирующем материале. Обычно термопластичные материалы указанного назначения изготавливают на основе ПИБ и БК, которые устойчивы к термоокислительной деструкции при длительной эксплуатации, погодостойкие и могут эксплуатироваться без растрескивания при отрицательных температурах до минус 60°С. Недостатками ПИБ и БК являются их хладотекучесть, высокая стоимость и низкий комплекс адгезионно-когезионных свойств к полярным материалам (бетон, металлы, стекло и т.д.), что является следствием неполярной структуры этих карбоцепных полимеров. Кроме того, ПИБ и БК не содержат реакционноспособных функциональных групп и поэтому плохо совмещаются с полярными неорганическими наполнителями (мел, тальк, асбест, цемент и т.д.), количество которых в 3-8 раз превышает количество связующих полимеров. В химии высокомолекулярных соединений (ВМС) такие композиционные материалы называются высоконаполненными. При приготовлении высоконаполненных композиций приходится использовать высокие (до 160°С) температуры и неполярные пластификаторы на основе минеральных масел для снижения вязкости полимерного связующего в композиции. При приготовлении герметизирующего материала с использованием механического перемешивания, мелкодисперсные неорганические наполнители подвергаются агрегации, из-за плохой совместимости с неполярным связующим, образуя “комки” наполнителя в полимерной матрице, что приводит к неравномерному распределению наполнителя в герметизирующем материале и ухудшению комплекса эксплуатационных свойств (повышенная скорость “старения” герметика, сокращенный срок эксплуатации из-за потери липкости). Низкомолекулярные неполярные пластификаторы (масла) в процессе эксплуатации материала диффундируют на границу раздела герметик – полярный материал, нарушая прочность связи, что приводит к отслаиванию герметика. Стоимость ПИБ и БК составляет 80-100 тыс.руб./т, а ОАПП – 35-40 тыс.руб./т.

ОАПП, в отличие от ПИБ и БК, является полярным полимером, имеющим низкую вязкость растворов и расплавов. При приготовлении герметизирующего материала в механическом смесителе принудительного нагревания через рубашку смесителя не требуется, т.к. в смеситель сначала загружают ПИБ и каучуки и проводят механохимическую деструкцию этих полимеров до тех пор пока температура в результате экзотермического разогрева реакционной смеси каучуков не поднимется до 120-140°С, затем дозируют в смеситель ОАПП, который в этих условиях также деструктирует при перемешивании в течение 0,1-0,3 часа. На этой стадии образовавшиеся макрорадикалы ОАПП рекомбинируют с макрорадикалами ПИБ и каучуков с выделением дополнительного тепла, что позволяет поддерживать температуру реакционной смеси в указанных пределах. Кроме того, макромолекулы ОАПП содержат олефиновые двойные связи, которые реагируют с макромолекулами каучуков образуя привитой сополимер, содержащий реакционноспособные полярные гидроксильные и карбонильные группы, вступающие затем в реакцию конденсации с гидроксильными группами на поверхности наполнителей (тальк, мел, асбест, цемент, техуглерод) с отщеплением молекул воды. Таким образом, в результате описанных реакций образуется привитой сополимер, химически связанный с наполнителями, что резко улучшает комплекс эксплуатационно-технологических свойств предлагаемого герметизирующего материала (Нехорошев В.П. и др. Окисленный АПП – новый ингредиент наполненных резиновых смесей на основе каучука СКЭПТ. – Журнал “Каучук и резина”, 1998, №5, с.25-26).

В качестве пластификаторов на основе минеральных масел при приготовлении герметизирующего состава используют индустриальное, трансформаторное или вазелиновое масло.

В качестве пигментов и красителей используют сажевый пигмент, двуокись титана, оксид цинка, оксид хрома, анилин черный, фталоцианин меди, чешуйки порошка меди, диазокрасители типа масляного оранжевого С и масляного желтого, антрахиноновые красители: судан фиолетовый R, судан синий GL.

Стеариновая кислота и стеарат кальция являются взаимозаменяемыми ингредиентами и используются в качестве внутренней граничной смазки (Маския Л. Добавки для пластических масс. М.: Химия, 1978, с.42-48).

Заявляемый термопластичный герметизирующий материал получают в смесителях типа ЗШ-1000-01 или ЗЛ-630-01 периодического действия, двухроторных с зетаобразными лопастями и рубашкой для подачи теплоносителя с целью нагревания пастообразных смесей вязкостью 2·102-105 Па·с или их охлаждения.

Изобретение поясняется на примерах.

Состав и свойства термопластичного герметизирующего материала приведены в табл.2 и 3. В табл.4 показано влияние различного порядка загрузки ингредиентов в смеситель и технологических режимов получения на его эксплуатационные свойства, указанные в табл.2.

В примерах 12-18 (табл.4) использовали оптимальный состав герметизирующего материала по примеру 6, но изменяли технологические режимы получения герметика с целью экспериментального обоснования оптимального режима предлагаемого способа.

В табл.2-4 показано, что пример 6 является оптимальным по составу и свойствам герметизирующего материала, а пример 14 – оптимальный по способу его получения.

Примеры 1 и 12 выполнены по прототипу.

Примеры 2-7, 14-16 соответствуют соотношению ингредиентов в заявляемых пределах их содержания в термопластичном герметизирующем составе и заявляемых технологических режимах его получения.

Примеры 8-11 выполнены с меньшим и большим соотношением ингредиентов, чем в заявляемых пределах, а примеры 12, 13, 17, 18 – выполнены за пределами заявляемых технологических режимов получения предлагаемого термопластичного герметизирующего материала. Предлагаемый термопластичный герметизирующий материал выпускается под торговой маркой “Герметик Викар” и “Герметик Викар С” в виде лент, рулонов отрезков различного сечения, шнуров, брикетов предназначенных для герметизации швов и сечений в конструкциях из различных материалов (металл, бетон, стекло, резина, дерево, кирпич, пластик и др.) в машиностроении и в жилищном строительстве. Качество их соответствует техническим условиям ТУ 2513-001-25687015-2004 и ТУ 5772-002-25687015-2004. Температурные условия их эксплуатации от минус 60°С до плюс 140°С.

Определение указанных в табл.3 показателей свойств герметизирующего материала выполняют согласно стандартным методикам анализа, приведенным в этих технических условиях.

Липкость герметизирующего материала определяли по утвержденной методике М-12-2004 (метод катящегося шара), заключающейся в определении длины пробега (“тормозного пути”) по липкому герметику стального шарика, скатившегося с наклонной плоскости. С увеличением длины пробега шарика липкость герметика уменьшается. Относительная ошибка определения равна ±10%.

Термопластичный герметизирующий материал получают следующим образом.

Пример 1 (прототип). В смеситель марки ЗЛ-630-01 емкостью 630 л загружают при температуре 20°С 150 кг (25%) ПИБ марки П-20, 42 кг (7%) индустриального масла марки И-20А, включают мешалку и нагревают смесь до 140°С путем подачи горячего диатермического масла в рубашку смесителя. Перемешивают смесь при этой температуре 1 час, а затем постепенно в течение 2 часов дозируют 408 кг (68%) мела марки МПГМ и охлаждают смеситель холодным диатермическим маслом, циркулирующим в рубашке, до 80°С. Герметизирующий материал перемешивают при этой температуре 0,6 часа до образования однородной массы, затем приготовленный герметик в количестве 600 кг дозируют из смесителя в специальные емкости и направляют на переработку в изделия. Свойства герметизирующего материала приведены в табл.3.

Пример 2. В смеситель загружают при 20°С 6 кг (1%) ПИБ марки П-20, 18 кг (3%) каучука СКЭПТ-50 и 18 кг (3%) бутилкаучука марки 1675 Н, затем включают мешалку и проводят механохимическую деструкцию смеси каучуков в течение 1 часа. Происходит экзотермический разогрев реакционной смеси до 120°С. Загружают в смеситель 6 кг (1%) ОАПП-Н и гомогенизируют реакционную смесь при этой температуре в течение 0,1 часа, затем постепенно дозируют 409,8 кг (68,3%) мела марки МПГМ, 21,6 кг (3,6%) асбеста, 24,6 кг (4,1%) битума марки БНД 90/130, 83,4 кг (13,9%) индустриального масла марки И-20А, 0,6 кг (0,1%) сажевого пигмента, 12 кг (2%) стеарата кальция, который является внутренней смазкой при дальнейшей переработке герметика в изделия экструзией. После загрузки всех ингредиентов температура реакционной смеси самопроизвольно понижается до 80°С. Смесь перемешивают 0,6 часа до однородного состояния и выгружают для дальнейшей переработки в изделия. Свойства герметизирующего материала приведены в табл.3.

Пример 3. Осуществляют аналогично примеру 2, но механохимическую деструкцию каучуков проводят в течение 1,2 часа до тех пор пока температура реакционной смеси в результате экзотермического разогрева не поднимется до 140°С. Сначала в смеситель загружают 18 кг (3%) ПИБ, 90 кг (15%) СКЭПТ-50 и 72 кг (12%) бутилкаучука, проводят их механодеструкцию, а затем в смеситель дозируют 18 кг (3%) ОАПП-Н. Реакционную смесь гомогенизируют перемешиванием в течение 0,3 часа и начинают дозировать в смеситель наполнители: мел – 241,8 кг (40,3%), асбест – 21,6 кг (3,6%), битум – 24,6 кг (4,1%), пластификатор – индустриальное масло И-20А – 105 кг (17,5%), сажевый пигмент – 6 кг (1%), стеарат кальция – 3 кг (0,5%). В результате загрузки указанных выше ингредиентов температура в смесителе самопроизвольно понижается до 90°С. Смесь перемешивают 1 час до однородного состояния, выгружают и направляют на переработку в товарную форму герметика “Викар”. Свойства полученного герметизирующего материала приведены в табл.3.

Остальные примеры 4-11, 14-18 осуществляют аналогично примеру 2, но используют различное количество ингредиентов, указанное в табл.1, и изменяют технологические режимы приготовления герметизирующего материала, приведенные в табл.4. В примере 12 (табл.4) порядок загрузки ингредиентов осуществляли так же, как в прототипе по примеру 1.

В примере 13 порядок загрузки также изменен по сравнению с известным и заявляемым порядком загрузки ингредиентов в смеситель. Свойства полученных герметизирующих материалов приведены в табл.3.

Таким образом, совокупность приведенных эксплуатационных и технологических свойств предлагаемого термопластичного герметизирующего материала свидетельствует об их комплексном улучшении в присутствии ОАПП в качестве одного из ингредиентов этого композиционного материала, а экспериментально обоснованные режимы получения герметика обеспечивают его стабильно положительные свойства.

Таблица 1
Показатели качества окисленного атактического полипропилена
Наименование показателя Марка полимера
ОАПП-Н ОАПП-С ОАПП-В
Массовая доля золы, % 0,25 0,30 0,30
Содержание изотактической фракции, % 15,0 12,0 4,5
Температура начала размягчения, °С 138,0 129,0 115,0
Глубина проникновения иглы при температуре 25°С и нагрузке 100 г; 0,1 мм 68,0 73,0 85,0

Таблица 2.
Состав (мас.%) термопластичных герметизирующих материалов
Ингредиенты герметизирующих материалов Номер примера
1 прот. 2 3 4 5 6 оптим. 7 8 9 10 11 12 13 14 15 16 17 18
Полиизобутилен с ММ 10-20 тыс. 25,0 1,0 3,0 3,0 17,0 3,0 3,0 1,0 1,0 12,0 1,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Синтетический каучук
Этиленпропиленовой тройной марки СКЭПТ-50
3,0 15,0 4,0 3,0 15,0 3,0 3,0 12,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Бутилкаучук марки 1675 Н 3,0 12,0 4,0 1,0 12,0 2,0 3,0 3,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Индустриальное масло марки И-20А 7,0 13,9 17,5 6,0 12,0 23,0 14,9 5,0 24,0 9,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0
Наполнители: 68,3 40,3 74,0 76,0 10,0 10,0 31,0 74,0 74,0 74,0 74,0 74,0 74,0 74,0
– мел марки МПГМ
– цемент 68,0 10,0 30,0 10,0 20,0
– тальк 40,0 14,0 20,0 13,0 10,0
– техуглерод марки П-803 32,4 70,0 10,0 14,85 20,0
– асбест 3,6 3,6 3,6 5,0
– битум марки БНД 90/130 4,1 4,1 4.0 5,0
Стеарат кальция 2,0 0,5 1,5 1,5 1,0 2,0 2,0 2,1 0,4 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Пигменты и красители 0,1 1,0 0,5 0,5 1,0 1,0 0,2 0,05 1,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Окисленный атактический полипропилен марки:
– ОАПП-Н 1,0 3,0 1,0 1,0 0,9 3,0 2,0 1,0
– ОАПП-С 5,0 5,0 5,0 5,5 5,0 5,0 5,0 5,0 5,0 5,0 5,0
– ОАПП-В 1,0 4,0 3,0 10,0

Таблица 3.
Свойства термопластичных герметизирующих материалов
Показатели Номер примера по табл.1
1 прот. 2 3 4 5 6 оптим. 7 8 9 10 11 12 прот. 13 14 оптим. 15 16 17 18
Прочность связи с металлом при отрыве, МПа 0,015 0,050 0,10 0,043 0,040 0,35 0,30 0,015 0,015 0,01 0,01 0,015 0,020 0,35 0,30 0,30 0,015 0,015
Прочность связи со сталью марки 08КП при отслаивании, кгс/см 0,20 0,40 0,90 0,30 1,70 1,40 0,15 0,25 0,15 0,15 0,20 0,25 1,70 1,40 1,30 0,20 0,20
Прочность связи с металлом при сдвиге, МПа 0,013 0,035 0,050 0,045 0,050 0,080 0,08 0,020 0,011 0,02 0,02 0,015 0,015 0,08 0,08 0,08 0,015 0,02
Прочность связи с бетоном при отрыве, МПа 0,06 0,075 0,100 0,075 0,070 0,100 0,10 0,06 0,06 0,05 0,05 0,04 0,04 0,10 0,08 0,10 0,05 0,05
Сопротивление текучести, мм 6,0 2,0 1,0 2,0 2,0 1,0 1,0 4,0 5,0 3,5 3,5 6,0 4,5 1,0 0,8 0,8 4,0 4,0
Термостойкость при 155°С в течение двух часов:
+ выдерживает + + + + + + + + + +
– не выдерживает
Водопоглощение, % 0,45 0,30 0,10 0,10 0,15 0,10 0,10 0,40 0,35 0,40 0,40 0,45 0,40 0,10 0,10 0,10 0,40 0,40
Пенетрация; 0,1 MM 75,0 57,0 60,0 54,0 55,0 55,0 60,0 60,0 52,0 70,0 52,0 65,0 60,0 55,0 58,0 60,0 75,0 72,0
Липкость, мм 150,0 110,0 70,0 80,0 95,0 70,0 85,0 120,0 115,0 110,0 150,0 150,0 120,0 70,0 65,0 65,0 110,0 110,0

Таблица 4.
Влияние порядка загрузки ингредиентов в смеситель и технологических режимов получения герметизирующих материалов на их эксплуатационные свойства, указанные в табл.2. (Состав герметизирующего материала соответствует примеру №6 из табл.1)
Номер примера по табл.2 Порядок загрузки ингредиентов в смеситель Температура в смесителе, °С; тип нагревателя Время механохимической деструкции, ч Длительность гомогенизации после дозировки ОАПП, ч Время дозировки наполнителей, пластификатора, красителей с охлаждением, ч Температура в смесителе (°С); время перемешивания до однородного состояния, ч
12
прототип
(ПИБ + СКЭПТ + БК) + наполнители + ОАПП + масло + стеарат кальция + краситель 130; принудительный нагрев через рубашку смесителя 1,15 0,30 2,0; принудительное охлаждение через рубашку смесителя 85; 3,24
13 (ОАПП + масло + наполнители) + ПИБ + СКЭПТ + БК + стеарат кальция + краситель 140; принудительный нагрев через рубашку смесителя 1,15 0,30 2,5; принудительное охлаждение через рубашку смесителя 80; 3,30
14
оптимальный
(ПИБ + СКЭПТ + БК) + ОАПП + наполнители + масло + краситель + стеарат кальция 130; экзотермический разогрев 1,15 0,20 2,0; самопроизвольное охлаждение 85; 3,10
15 Тот же, что в примере №14 120; экзотермический разогрев в смесителе 1,15 0,30 2,0; самопроизвольное охлаждение 80; 3,10
16 Тот же, что в примере№14 140; экзотермический разогрев 1,15 0,10 2,0; самопроизвольное охлаждение 90; 3,10
17 Тот же, что в примере №14 115; экзотермический разогрев в смесителе 1,15 0,08 2,0; самопроизвольное охлаждение 75:3,10
18 Тот же, что в примере №14 145; экзотермический разогрев в смесителе 1,15 0,32 2,0; самопроизвольное охлаждение 93; 3,10

Формула изобретения

1. Термопластичный герметизирующий материал на основе полиизобутилена, или бутилкаучука, или синтетического тройного этиленпропиленового каучука, или их смесей, включающий минеральное масло, пигменты и красители, стеарат кальция, наполнители, выбранные из группы: мел, цемент, тальк, технический углерод, асбест, битум или их смеси, окисленный атактический полипропилен при следующем соотношении ингредиентов, мас.%:

полиизобутилен, или бутилкаучук,
или синтетический тройной
этиленпропиленовый каучук или их смеси 7-30
минеральное масло 6-23
пигменты и красители 0,1-1,0
стеарат кальция 0,5-2,0
указанные наполнители 34-80
окисленный атактический полипропилен 1-10

2. Способ получения термопластичного герметизирующего материала по п.1, заключающийся в перемешивании указанных ингредиентов при нагревании, при этом сначала проводят механохимическую деструкцию полиизобутилена, или бутилкаучука, или синтетического тройного этиленпропиленового каучука, или их смесей в смесителе при экзотермическом разогреве смеси до 120-140°С, затем вводят окисленный атактический полипропилен и проводят гомогенизацию смеси в течение 0,1-0,3 ч, затем постепенно понижают температуру до 80-90°С путем последовательного ввода наполнителей, минерального масла, пигментов и красителей, стеарата кальция и перемешивания реакционной смеси до однородного состояния.


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 09.02.2009

Извещение опубликовано: 20.10.2010 БИ: 29/2010


Categories: BD_2309000-2309999