Патент на изобретение №2309899
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННЫХ РАСТВОРОВ
(57) Реферат:
Изобретение относится к химической технологии, в частности к способам получения растворов с заранее заданными свойствами. Способ включает воздействие на раствор водорасторимой соли в воде постоянным электрическим током в камерах диафрагменного электролизера. В полученный активированный раствор вводят водорастворимую соль в количестве, позволяющем образовать двухфазную систему, состоящую из насыщенного раствора и равновесного осадка соли, которые после разделения используют для активирования новых растворов. В активируемый раствор дополнительно вводят водорастворимые кремнийсодержащие соединения, например силикаты натрия или калия, в количестве от 0,05 до 3,0% к массе раствора. Технический эффект – создание устойчивых во времени активированных структур водосодержащих сред с небольшими энергетическими затратами, которые могут найти применение в химической технологии, сельском хозяйстве, медицине и других областях. 1 з.п. ф-лы, 7 табл.
Изобретение относится к химической технологии, в частности к способам получения растворов, обладающих заранее обусловленными свойствами, и может найти применение в химической, пищевой промышленности, сельском хозяйстве, медицине и других отраслях хозяйства. Известны различные способы активирования водных растворов: механическое диспергирование, воздействие лазером, постоянным магнитным или высокочастотным электромагнитным полем, а также электрохимическим способом [1; 2]. Последний из перечисленных способов заключается в том, что на водосодержащий электропроводный раствор (электролит) воздействуют постоянным электрическим током в диафрагменном электролизере [3]. В результате обработки получают так называемые анолит и католит – жидкости, обладающие рядом специфических свойств, том числе, соответственно, кислотными или щелочными свойствами. Электрохимические показатели (ЭХП) анолита и католита характеризуются водородным показателем (рН) и окислительно-восстановительным потенциалом (ОВП). Получаемые указанными способами активированные водные растворы имеют тот недостаток, что вследствие релаксации они сохраняют свои специфические свойства относительно короткое время. Так, 0,5 л католита теряет свойства активности уже через 13-27 часов, анолита – через 17-19 часов [4; с.45]. По этой причине активирование растворов проводят непосредственно перед их использованием, что требует наличия в каждом случае специального оборудования. Известен способ получения активированных жидкостей [5], который состоит в том, что образующиеся в камерах электролизера активированные растворы сгущают, а полученные концентраты растворяют в жидкости, подлежащей активированию. Недостатком данного способа, принятого нами за прототип, является высокая энергоемкость процесса получения целевых продуктов. Это обусловлено тем, что концентрация получаемых в электролизере активированных водных растворов не превышает (0,3-0,5) %. Таким образом, чтобы приготовить 3-5 г активированного концентрата, необходимо удалить из раствора, соответственно, от 997 до 995 г воды – вымораживанием, выпариванием, мембранным или другим методом, требующим значительных энергетических затрат. В основу заявляемого изобретения поставлена задача – снизить энергозатраты на получение активированных растворов. Это достигается тем, что в водный раствор водорастворимой соли, подвергшийся воздействию постоянного электрического тока в камерах диафрагменного электролизера, вводят водорастворимую соль в количестве, позволяющем образовать двухфазную систему, состоящую из насыщенного раствора и равновесного осадка соли, которые после разделения используют для активирования новых растворов. В определенных случаях, в зависимости от состава и назначения целевого продукта, в активируемый раствор вводят водорастворимые кремнийсодержащие соединения, например силикаты натрия или калия, в количестве от 0,05 до 3,0% к массе раствора. Практически предлагаемый способ осуществляют следующим образом. Раствор водорастворимой соли в воде концентрацией (0,1-0,5) % подвергают воздействию постоянного электрического тока в камерах диафрагменного электролизера. В результате электрохимической обработки в камерах электролизера получают два активированных раствора, один из которых – анолит с рН<7,0 – обладает кислотными свойствами и положительным окислительно-восстановительным потенциалом (ОВП), другой – католит с рН>7,0, соответственно, – щелочными свойствами и отрицательным ОВП. В каждый из полученных активированных растворов (анолит и католит) вводят соль, хорошо растворимую в воде. При этом соль берется в избытке, в количестве, позволяющем образовать двухфазную систему, состоящую из насыщенного раствора и равновесного осадка соли. После перемешивания и отстаивания насыщенный раствор отделяют от осадка фильтрацией или декантацией, а осадок обезвоживают, например, воздушной сушкой при комнатной температуре или под вакуумом. В результате перечисленных операций как насыщенный (маточный) раствор, так и осадок соли приобретают свойства электрохимической активности. При разбавлении водой насыщенного раствора или при растворении в воде осадка соли получают активированные растворы с электрохимическими показателями, соответствующими исходным активированным растворам – анолиту и католиту. Ниже приводятся примеры осуществления заявляемого способа. Для реализации способа использовали электролизер с корпусом, изготовленным из винипласта, снабженный керамической диафрагмой и графитовыми электродами. Блок питания включал в себя ЛАТР и выпрямитель, а измерительный блок – амперметр постоянного тока и вольтметр. Для измерения водородного показателя рН и окислительно-восстановительного потенциала (ОВП) применяли рН-метр-милливольтметр марки рН-121. Пример 1 Приготовили 0,5%-ный раствор хлорида натрия NaCl в дистиллированной воде. После обработки раствора в электролизере постоянным электрическим током получили два активированных раствора – анолит и католит. В каждый из них добавили соль – хлорид натрия – в таком количестве, чтобы образовались насыщенный раствор и нерастворимый равновесный осадок (при данной температуре). После отстаивания насыщенный (маточный) раствор и осадок разделили фильтрацией. При выполнении перечисленных операций измеряли электрохимические показатели (рН и ОВП) растворов: исходного раствора (до активирования), анолита, католита и насыщенных растворов. Результаты измерений представлены в таблице 1.
Пример 2 В исходный 0,3%-ный водный раствор хлорида натрия NaCl ввели кремнийсодержащее соединение состава Na2O·mSiO2+K2O·nSiO2 в виде жидкого стекла (ЖС) с содержанием сухого вещества 45% в количестве 1,0% к массе исходного раствора. Приготовленный раствор проактивировали в электролизере. В полученные в результате этого анолит и католит добавили хлорид натрия NaCl в избытке, до образования насыщенных растворов с равновесными осадками соли. Насыщенные (маточные) растворы и осадки разделили фильтрацией. Осадки высушили на фильтре при комнатной температуре и вновь растворили в дистиллированной воде. Результаты измерений электрохимических показателей растворов приведены в таблице 2.
Данные таблиц 1 и 2 свидетельствуют, что полученные как насыщенные (маточные) растворы, так и соответствующие равновесные осадки солей обладают свойствами электрохимической активности. Пример 3 Приготовили 0,3%-ный раствор азотнокислого калия KNO3 в дистиллированной воде. После обработки раствора в электролизере постоянным электрическим током получили два активированных раствора – анолит и каталит.В анолит и католит ввели KNO3 до образования насыщенных растворов с равновесными осадками. После этого насыщенные растворы и осадки разделили и измерили их показатели, как описано в примере 2. Результаты измерений электрохимических показателей – в таблице 3.
Пример 4 Условия данного опыта аналогичны условиям опыта 3. Отличие состоит лишь в том, что в исходный 0,3%-ный раствор KNO3, перед его активированием в электролизере, ввели водорастворимое кремнийсодержащее соединение (Na2О·mSiO2+К2О·nSiO2) в виде жидкого стекла (ЖС) в количестве 1% с содержанием сухого вещества 45%. Дальнейшие операции по активированию и насыщению анолита и католита солью KNO3 и разделению твердой и жидкой фаз выполнили в последовательности, описанной в примере 3. Данные опыта представлены в таблице 4.
Полученные в данном примере активированные продукты отличаются от соответствующих образцов, полученных в примере 3, наличием в них кремнийсодержащего компонента. Пример 5 Изучали изменение электрохимических показателей растворов при их разбавлении. В качестве примеров в таблице 4 представлены результаты измерений электрохимических показателей растворов каталитов в процессе разбавления соответствующих насыщенных растворов: – образец 5.1. – активированный (0,3%-ный раствор NaCl+1,0%-ный раствор ЖС), насыщенный солью KNO3; – образец 5.2. – активированный (0,3%-ный раствор KNO3+1,0%-ный раствор ЖС), насыщенный солью KNO3; – образец 5.3. – насыщенный раствор осадка активированной соли, полученной из раствора: активированный (0,3%-ный раствор NaCl+1,0%-ный раствор ЖС), насыщенный солью NaCl. Насыщенные растворы разбавили дистиллированной водой вдвое, затем полученные растворы вновь разбавили вдвое и т.д., в результате получили растворы, разбавленные в 2, 4, 8, 16 и т.д. раз. Результаты измерений водородного показателя рН и окислительно-восстановительного потенциала (ОВП) исходных и разбавленных растворов представлены в таблице 5.
Пример 6. ОПРЕДЕЛЕНИЕ СТАБИЛЬНОСТИ ЦЕЛЕВЫХ ПРОДУКТОВ. Изучали динамику изменения во времени активных свойств насыщенных растворов и равновесных солей, получаемых заявляемым способом. С этой целью в электролизере проактивировали растворы различных солей одинаковой начальной концентрации (0,3%). На их основе приготовили насыщенные растворы с равновесными осадками. Насыщенные (маточные) растворы и их осадки разделили и поместили в герметично закрытые сосуды из темного стекла. При выдерживании образцов в течение более 8 месяцев при комнатной температуре периодически измеряли их электрохимические показатели. Полученные результаты измерений содержатся в таблицах 6 и 7. Измерения показали, что электрохимические показатели как активированных насыщенных растворов, так и соответствующих активированных осадков изменились незначительно. Практическая ценность заявляемого способа состоит в том, что данный способ позволяет приготавливать активированные жидкости непосредственно в месте их использования без применения каких-либо технических устройств, а сам процесс приготовления их существенно упрощается: чтобы получить активированный раствор достаточно растворить активированный агент (активированный насыщенный раствор или активированную обезвоженную соль) в определенном количестве воды. При этом, в зависимости от степени разбавления (растворения) исходного агента, сразу получают активированные жидкости с заранее заданными значениями рН и ОВП.
Достоинство данного способа в сравнении с прототипом заключается также в его экономической эффективности. Предлагаемый способ позволяет создавать устойчивые во времени структуры водосодержащих сред с небольшими энергетическими затратами. Так, по известному способу [5] из 1 л активированного раствора может быть получено лишь 3-5 г активированного препарата, причем на удаление воды, которая составляет подавляющую долю раствора, требуются значительные затраты энергии. В то же время заявляемым способом из 1 л активированного раствора (например, раствора калиевой селитры) может быть получено более 1300 г насыщенного раствора, обладающего теми же электрохимическими показателями. Существенным достоинством заявляемого способа является и то, что получаемые данным способом активированные агенты (насыщенный раствор и осадок соли) сохраняют свои специфические свойства активности практически без изменения длительное время. Предлагаемый способ может найти применение во всех областях хозяйства, где в настоящее время используются активированные жидкости [6; 7]. Источники информации 1. Пат.РФ 2167823, C02F 1/46, 2001 г. 2. Пат.РФ 2181106, С02F 1/46, 1/48, 2002 г. 3. Электрохимическая активация: очистка воды и получение полезных растворов. / Бахир В.М., Задорожный Ю.Г., Леонов Б.И. и др. М.: ВНИИИМТ, 2001, с.69-81. 4. Техника и наука, 1985, №5, с.43-45. 5. Пат.Украины 34551, C02F 1/46, 2002 г. 6. Прилуцкий В.И; Бахир В.М. Электрохимически активированная вода: аномальные свойства, механизм биологического действия. М.: ВНИИИМТ АО НПО “Экран”, 1997. – 228 с.стр.147-155. 7. Авт. св. № 1662943 (СССР), C02F 1/46, 1991 г.
Формула изобретения
1. Способ получения активированных растворов, включающий воздействие на раствор водорасторимой соли в воде постоянным электрическим током в камерах диафрагменного электролизера, отличающийся тем, что в полученный активированный раствор вводят водорастворимую соль в количестве, позволяющем образовать двухфазную систему, состоящую из насыщенного раствора и равновесного осадка соли, которые после разделения используют для активирования новых растворов. 2. Способ по п.1, отличающийся тем, что в активируемый раствор вводят водорастворимые кремнийсодержащие соединения, например силикаты натрия или калия, в количестве от 0,05 до 3,0% к массе раствора.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||