Патент на изобретение №2309825

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2309825 (13) C2
(51) МПК

B23K10/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 29.11.2010 – действует

(21), (22) Заявка: 2005136806/02, 25.11.2005

(24) Дата начала отсчета срока действия патента:

25.11.2005

(43) Дата публикации заявки: 27.05.2007

(46) Опубликовано: 10.11.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2198772 С1, 20.02.2003. RU 2058865 С1, 27.04.1996. RU 2071189 C1, 27.12.1996. RU 2192338 С2, 10.11.2002. RU 2036059 C1, 27.05.1995. DE 3711259 A, 20.10.1988. JP 11104841 A, 20.04.1999. US 4532409 A, 30.07.1985. JP 58119469 A, 15.07.1983.

Адрес для переписки:

614000, г.Пермь, Комсомольский пр., 29, Пермский государственный технический университет, патентно-информационный отдел

(72) Автор(ы):

Щицын Юрий Дмитриевич (RU),
Косолапов Олег Александрович (RU),
Щицын Владислав Юрьевич (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования “Пермский государственный технический университет” (RU),
Общество с ограниченной ответственностью “НТЦ “Вулкан-Плазма” (RU)

(54) ПЛАЗМОТРОН

(57) Реферат:

Изобретение относится к плазмотрону и может найти применение для плазменной наплавки, сварки, резки черных и цветных металлов. В корпусе (1) плазмотрона выполнены каналы (5) для подвода плазмообразующего газа. В кожухе (2) выполнен канал для подвода защитного газа (6). Втулки (7) и (8) соединены между собой при помощи замкового сопряжения (9) и в них установлен полый электрод (10). Плазмотрон имеет единую систему охлаждения корпуса (1), электрода (10), плазмообразующего сопла (3) и кожуха (2). Система охлаждения включает в себя трубопровод (13), кольцевые каналы: (15) – между электродом (10) и трубопроводом (13), (16) – между электродом (10) и внутренними изоляционными втулками (7 и 8), расположенный в осевом направлении в проточке, выполненной на внешней поверхности электрода (10), (17) – между внутренними изоляционными втулками (7 и 8) и корпусом (1), (18) – между корпусом и кожухом, перепускные радиальные каналы (19) в электроде (10), соединяющие кольцевые каналы (15 и 16), перепускные радиальные каналы (20) в верхней втулке-изоляторе (8), соединяющие кольцевые каналы (16 и 17), перепускные радиальные каналы (21) в корпусе, соединяющие кольцевые (17 и 18) и отводящий канал (14) в кожухе (2). Техническим результатом изобретения является повышение надежности плазмотрона за счет исключения возможности электрического пробоя между электродом и корпусом при зажигании плазменной дуги высоковольтным высокочастотным разрядом при сохранении высокой эффективности охлаждения теплонагруженных узлов и без увеличения поперечных габаритов плазмотрона. 2 ил.

Изобретение относится к области плазменной обработки металлов, а именно к устройствам для плазменной наплавки, сварки, резки черных и цветных металлов.

Известен плазмотрон, содержащий полый цилиндрический электрод, корпус с закрепленными на нем плазмообразующим и защитным соплами и выполненными в корпусе каналами для подвода плазмообразующего и защитного газов и отвода охлаждающей жидкости, снабженного двумя изоляционными втулками, установленными между корпусом и электродом на противоположных концах корпуса, систему охлаждения с центральным и соосным с ним кольцевым каналами, соединенными между собой и расположенными в электроде, кольцевым каналом, образованным наружной поверхностью электрода и внутренней поверхностью корпуса, соединенным с полостью электрода перепускными радиальными каналами, выполненными в электроде вблизи рабочего конца (см. патент РФ №2060130, кл. В23K 10/60).

Этот плазмотрон достаточно прост по конструкции, имеет небольшие габариты и массу, технологичен и удобен в эксплуатации, обладает высокой ремонтопригодностью (не имеет сварных и паяных соединений). Однако имеются резервы для повышения мощности и надежности плазмотрона за счет повышения эффективности охлаждения. Кроме того, в известном плазмотроне существует электрическая связь плазмообразующего и защитного сопл, что повышает возможность двойного дугообразования при касании защитным соплом изделия и создания аварийного режима при работе плазмотрона.

Известен плазмотрон, содержащий полый цилиндрический электрод, корпус с закрепленным на нем плазмообразующим соплом и выполненными в нем каналами для подвода плазмообразующего газа, снабженного двумя изоляционными втулками, установленными между корпусом и электродом на противоположных концах корпуса. На корпус при помощи двух изоляционных втулок установлен кожух с закрепленным на нем защитным соплом и выполненными в нем каналами для подвода защитного газа и отвода охлаждающей жидкости. Система охлаждения включает в себя трубопровод, установленный в полости электрода, кольцевые каналы между корпусом и электродом, электродом и трубопроводом, корпусом и кожухом соответственно, перепускные радиальные каналы, выполненные в электроде и корпусе и соединяющие кольцевые каналы (см. патент РФ №2198772, кл. В23K 10/60). Плазмотрон обладает эффективным охлаждением и повышенной надежностью в работе вследствие электрической изоляции плазмообразующего и защитного сопл при помощи изоляционных втулок, установленных между корпусом и кожухом.

Однако при зажигании плазменной дуги высоковольтным высокочастотным разрядом возможен электрический пробой в кольцевом канале между корпусом и электродом, что может привести к аварийной ситуации и выходу из строя плазмотрона. Вероятность пробоя возрастает при использовании источников сварочного тока с высоким напряжением холостого хода, например при плазменной резке и напылении (напряжение холостого хода более 300 В).

Задачей настоящего изобретения является повышение надежности плазмотрона за счет исключения возможности электрического пробоя между электродом и корпусом при зажигании плазменной дуги высоковольтным высокочастотным разрядом при сохранении высокой эффективности охлаждения теплонагруженных узлов и без увеличения поперечных габаритов плазмотрона.

Задача решается усовершенствованием известного плазмотрона. Предлагаемый плазмотрон содержит корпус, кожух, плазмообразующее и защитное сопла, выполненные в корпусе каналы для подвода плазмообразующего газа, выполненные в кожухе канал для подвода защитного газа и канал для отвода охлаждающей жидкости, установленные в полости корпуса переднюю и заднюю изоляционные втулки. Втулки соединены между собой при помощи замкового сопряжения. Во втулках установлен полый электрод. На корпусе установлены передняя и задняя изоляционные втулки, на которые помещается кожух. Плазмотрон имеет единую систему охлаждения корпуса, электрода, плазмообразующего сопла и кожуха. Система охлаждения включает в себя трубопровод, кольцевые каналы: канал между электродом и трубопроводом, канал между электродом и внутренними изоляционными втулками, расположенный в осевом направлении в проточке, выполненной на внешней поверхности электрода, канал между внутренними изоляционными втулками и корпусом, расположенный в осевом направлении в проточке на внутренней поверхности корпуса, канал между корпусом и кожухом, расположенный в осевом направлении между наружными изоляционными втулками, перепускные радиальные каналы в электроде, соединяющие кольцевые каналы внутри и снаружи электрода, перепускные радиальные каналы в верхней изоляционной втулке, установленной в полости корпуса, соединяющие кольцевые каналы на внешней поверхности электрода и внутри корпуса, перепускные радиальные каналы в корпусе, соединяющие кольцевые каналы внутри корпуса и внутри кожуха и отводящий канал в кожухе.

Предлагаемый плазмотрон отличается от плазмотрона по прототипу тем, что установленные в полости корпуса передняя и задняя изоляционные втулки соединены между собой при помощи замкового сопряжения. На внешней поверхности электрода между внутренними изоляционными втулками выполнена проточка, образующая кольцевой канал между электродом и втулками. На внутренней поверхности корпуса между внутренними изоляционными втулками выполнена проточка, образующая кольцевой канал между корпусом и втулками. В верхней втулке выполнены перепускные радиальные каналы, соединяющие кольцевые каналы между электродом и втулками и между корпусом и втулками. Перепускные радиальные каналы, выполненные в электроде и корпусе, расположены на противоположных концах кольцевых каналов относительно перепускных каналов, выполненных в верхней части изоляционных втулок.

Полное разделение электрода и корпуса изоляционными втулками, соединенными между собой при помощи замкового сопряжения, исключает возможность электрического пробоя в кольцевом канале между корпусом и электродом при зажигании плазменной дуги высоковольтным высокочастотным разрядом. Выполнение кольцевых каналов между электродом и изоляционными втулками и между корпусом и изоляционными втулками за счет проточек в соответствующих элементах позволяет избежать увеличения радиальных размеров плазмотрона. Расположение перепускных каналов в верхней изоляционной втулке, электроде и корпусе на противоположных концах кольцевых каналов обеспечивает максимальную поверхность контакта охлаждаемых узлов с жидкостью, что повышает эффективность системы охлаждения.

На фиг.1 показан общий вид плазмотрона с продольным разрезом по системе подвода и отвода охлаждающей жидкости и системе подвода защитного газа.

На фиг.2 показан плазмотрон с продольным разрезом по системе подвода плазмообразующего газа и системе охлаждения (для повышения четкости чертежа отдельные детали показаны в увеличенном масштабе).

Плазмотрон содержит корпус 1, кожух 2, плазмообразующее сопло 3, установленное на корпусе 1, защитное сопло 4, установленное на кожухе 2, выполненные в корпусе 1 каналы 5 для подвода плазмообразующего газа, выполненный в кожухе 2 канал 6 для подвода защитного газа, установленные в полости корпуса 1 переднюю 7 и заднюю 8 изоляционные втулки, соединенные между собой при помощи замкового сопряжения 9. Во втулке 7 головной своей частью «а» установлен полый электрод 10, задняя часть «b» которого (хвостовик) установлена во втулке 8. На корпусе 1 установлены передняя 11 и задняя 12 изоляционные втулки, на которые помещается кожух 2. Плазмотрон содержит единую водяную систему охлаждения электрода 10, корпуса 1, плазмообразующего сопла 3 и кожуха 2. Система охлаждения включает в себя расположенный по оси плазмотрона трубопровод 13 для подвода охлаждающей жидкости в полость «d» электрода 10 и выполненный в кожухе 2 канал 14 для отвода охлаждающей жидкости. Трубопровод 13 образует с электродом 10 кольцевой канал 15. Электрод 10 образует с втулками 7, 8, корпусом 1 и кожухом 2 кольцевые каналы 16, 17 и 18. Канал 16 образован проточкой, выполненной на внешней поверхности электрода 10, канал 17 – проточкой на внутренней поверхности корпуса 1. Кольцевые каналы 15 и 16 соединены перепускными радиальными каналами 19, выполненными в электроде 10 и расположенными в нижней части кольцевого канала 16. Кольцевые каналы 16 и 17 соединены перепускными радиальными каналами 20, выполненными в верхней изоляционной втулке 8 и расположенными в верхней части канала 17. Кольцевые каналы 17 и 18 соединены перепускными радиальными каналами 21, выполненными в корпусе 1 и расположенными в нижней части каналов 17 и 18. Подвод воды осуществляется по каналу 22. Крепление электрода 10 и герметизация кольцевых каналов 16 и 17 производится гайкой 23. Крепление кожуха 2 на корпусе 1 и герметизация кольцевого канала 18 осуществляется гайкой 24 через шайбу-изолятор 25.

При работе плазмотрона охлаждающая жидкость по каналу 22 трубопровода 12 подается к рабочей зоне электрода 10 (полость «d»), заполняет кольцевой канал 15, охлаждая при этом электрод 10 изнутри. Из канала 15 через каналы 19 охлаждающая жидкость поступает в кольцевой канал 16, охлаждая электрод 10 снаружи, далее через каналы 20 жидкость поступает в кольцевой канал 17, охлаждая корпус 1 изнутри. По каналам 21 охлаждающая жидкость подается в кольцевой канал 18, охлаждая корпус 1 снаружи и кожух 2, и отводится на слив по каналу 14. Охлаждение сопл 3 и 4 осуществляется через надежный тепловой контакт в корпус 1 и кожух 2 соответственно, а также плазмообразующим и защитным газами.

Плазмообразующий газ через каналы 26 и 5 поступает в полость плазмообразующего сопла 3, защитный газ по каналу 6 поступает под защитное сопло 4.

Лабораторные испытания опытного образца плазмотрона с габаритами, равными D29 × 70 мм, и массой 0,3 кг при расходе охлаждающей жидкости (воды) 2,5 л/мин показали высокую надежность работы при сварочном токе до 450 А. При этом была исключена возможность электрического пробоя между электродом и корпусом плазмотрона при зажигании плазменной дуги высоковольтным высокочастотным разрядом при использовании источника питания сварочного тока с напряжением холостого хода 300 В.

Формула изобретения

Плазмотрон, содержащий полый цилиндрический электрод, корпус, в котором выполнены каналы для подвода плазмообразующего газа, закрепленное на корпусе плазмообразующее сопло, установленные с противоположных концов корпуса между ним и электродом две изоляционные втулки, установленный на корпусе при помощи двух изоляционных втулок, расположенных на внешней стороне корпуса на противоположных концах, кожух с закрепленным на нем защитным соплом и выполненными в нем каналами для подвода защитного газа и отвода охлаждающей жидкости, систему охлаждения с центральным и соосными с ним кольцевыми каналами, соединенными между собой и расположенными в электроде, кольцевыми каналами, образованными между внешней поверхностью корпуса и внутренней поверхностью кожуха и в осевом направлении – между внешними изоляционными втулками, и перепускные радиальные каналы, выполненные в электроде и корпусе, отличающийся тем, что изоляционные втулки, установленные между корпусом и электродом, соединены между собой при помощи замкового сопряжения, кольцевые каналы системы охлаждения в виде проточек, образованные между изоляционными втулками, электродом и корпусом, выполнены на внешней стороне электрода и внутренней стороне корпуса и в осевом направлении – между изоляционными втулками и соединены в верхней части перепускными радиальными каналами, выполненными в верхней изоляционной втулке, а перепускные радиальные каналы, выполненные в электроде и корпусе, расположены на противоположных концах кольцевых каналов относительно перепускных каналов, выполненных в верхней части изоляционных втулок.

РИСУНКИ

Categories: BD_2309000-2309999