Патент на изобретение №2158846
|
||||||||||||||||||||||||||
(54) ДИСК С ОТВЕРСТИЯМИ, В ЧАСТНОСТИ, ДЛЯ КЛАПАННЫХ ФОРСУНОК И СПОСОБ ИЗГОТОВЛЕНИЯ ДИСКА С ОТВЕРСТИЯМИ
(57) Реферат: Изобретение относится к двигателестроению, в частности для использования на клапанных форсунках в системах впрыскивания топлива, в лакокрасочных соплах или же в способах сублимационной сушки. Изобретение позволяет достичь высокого качества распыления и требуемой формы струи. Диск с отверстиями содержит полный проход для текучей среды, в частности для топлива. Проход складывается из впускных отверстий и выпускных отверстий и по меньшей мере из одного расположенного между ними канала. Впускные и выпускные отверстия располагаются при этом в диске с отверстиями так, что они в проекции на плоскость ни в одном месте не перекрываются. Благодаря такому смещению выпускных отверстий относительно впускных отверстий получают S-образную форму течения потока среды, которая накладывает свой отпечаток на образование турбулентности, способствующей распылению. 2 с. и 34 з.п.ф-лы. 33 ил. Изобретение относится к диску с отверстиями, предназначенному, в частности, для клапанных форсунок в соответствии с ограничительной частью основного пункта 1 формулы изобретения и к способу изготовления диска с отверстиями согласно ограничительной части пункта 27 формулы изобретения. Из выложенного описания изобретения к неакцептованной заявке Европейского Патентного Ведомства – EP-OS 0354660 – известно, как изготавливаются форсунки в форме дисков с отверстиями, так называемые “диски типа S”. Этим самым предполагается, что впускные и выпускные отверстия в диске с отверстиями выполнены смещенными друг относительно друга, в результате чего в потоке текучей среды, проходящей через диск с отверстиями, принудительно возникает “S-образный виток”. Предложенные диски с отверстиями образуются двумя плоскими, соединенными бондами пластинками, выполненными из кремния. На кремниевых пластинках отформованы зоны уменьшенной толщины, так что между отверстиями первой пластинки и одним отверстием второй пластинки образованы щелевидные отверстия, проходящие поперек потока параллельно торцевым поверхностям пластинок. С помощью известной технологии масок посредством травления на кремниевых пластинках, которые имеют множество структур дисков с отверстиями, выполняют впускные и выпускные отверстия. Имеющие форму усеченного конуса контуры для отверстий в диске с отверстиями вытекают логически из анизотропной техники травления. Клапанная система, состоящая из эластичной кремниевой клапанной пластинки и пластинки форсунки, выполненной также из кремния, уже известна из выложенного описания изобретения к неакцептованной заявке Европейского Патентного Ведомства – EP-OS 0314285. Обе кремниевые пластинки соединены друг с другом и могут отклоняться относительно друг друга. В кремниевых клапанных пластинках предусмотрены впускные отверстия, которые размещены со смещением относительно выпускных отверстий в пластинках форсунок. В закрытом состоянии клапанной системы плоские поверхности кремниевой клапанной пластинки уплотняют выпускные отверстия в пластинке форсунок, в то время как при деформации пластинки форсунки посредством элемента манипулирования возникает S-образный проход для текучей среды, и клапанная система открывается. Из патента США 4907748 уже известна топливная клапанная форсунка, которая на своем конце, расположенном по течению потока, имеет состоящее из двух кремниевых пластинок сопло. Так же, как и в описанных выше дисках с отверстиями, впускные отверстия в обеих кремниевых пластинках смещены друг относительно друга, так что в потоке текучей среды – в данном случае это топливо – возникает “S-образный виток”. Все названные выше диски с отверстиями, которые выполнены из кремния, обладают недостатком – недостаточным при определенных обстоятельствах сопротивлением разрушению, которое является следствием хрупкости кремния. Как раз при длительных нагрузках, например в клапанной форсунке (колебания двигателя), имеется опасность ломки кремниевых пластинок. Установка кремниевых пластинок на металлических элементах конструкции, как например, на клапанных форсунках, является дорогостоящей, так как должны быть найдены особые решения по выполнению зажимов без напряжений, и герметизация клапана является проблематичной. Например, невозможно произвести приваривание выполненных из кремния дисков с отверстиями к клапанной форсунке. Кроме того, недостаток состоит в износе краев отверстий кремниевых дисков при частом прохождении текучей среды. Далее, из патента ФРГ – DE-PS 483615 – уже известна форсунка для двигателей внутреннего сгорания с системой впрыска топлива, которая образована также двумя пластинками форсунки, при этом пластинки форсунки имеют размещенные со смещением друг относительно друга впускные и выпускные отверстия, чтобы способствовать разрыву протекающего топлива. Однако с помощью этой форсунки никоим образом невозможно формирование струи разбрызгиваемого топлива в соответствии с желаемой геометрией. Преимущества изобретения Диск с отверстиями согласно изобретению, обладающий отличительными признаками основного пункта 1 формулы изобретения, имеет преимущество, состоящее в том, что равномерное мельчайшее распыление текучей среды достигается без дополнительной энергии, а именно, лишь за счет имеющегося в распоряжении давления среды, причем достигается особенно высокое качество распыления и форма струи, соответствующая предъявляемым требованиям. И, как следствие, при использовании такого диска с отверстиями, установленного на двигателе внутреннего сгорания, кроме всего прочего, уменьшается выброс выхлопных газов, а также и достигается уменьшение потребления топлива. Таким образом, с помощью дисков с отверстиями согласно изобретению, выполненных как диски типа S, можно получать струи экзотических, необычных форм. Эти диски с отверстиями позволяют получать для одноструйных, двухструйных и многоструйных спреев бесчисленные варианты форм поперечных сечений струи, как, например, прямоугольники, треугольники, кресты, эллипсы. Такие необычные формы струй позволяют производить точное оптимальное согласование с заданной геометрией, например с разными поперечными сечениями выпускного газопровода двигателей внутреннего сгорания. Отсюда вытекают преимущества согласованного по форме использования имеющегося в распоряжении поперечного сечения для равномерно распределенной подачи смеси, которая ведет к уменьшению количества выхлопных газов, и для предотвращения отложений на стенках выпускного газопровода, наносящих вред выхлопных газам. С помощью приведенных в зависимых пунктах формулы изобретения мер имеется возможность реализации других предпочтительных форм выполнения и улучшенных вариантов выполнения указанного в основном пункте 1 формулы изобретения диска с отверстиями. Особенно предпочтительным является то, что каналы, выполненные в виде элементов, соединяющих потоки, проходящие через впускные и выпускные отверстия, снабжены продолжениями (cavities), в которых за счет протекающей мимо текучей среды образуются завихрения потока. Взаимодействие между завихрением и образующим его потоком приводит к временной нестабильности в зоне взаимодействия. Поток принудительно приводится в колебательное движение, в результате чего, во-первых, могут возникать своеобразные рисунки струй, а во-вторых, возникающая как следствие турбулентность приводит к уменьшению среднего диаметра капли в спрее. Следующее преимущество вытекает из использования в диске с отверстиями задерживающей ловушки. Вследствие движения по инерции после задерживающей ловушки возникает вихревой шлейф с сильными поперечными импульсами. Турбулентность в вихревом шлейфе способствует тому, чтобы разбрызгивался спрей, содержащий очень мелкие капельки. Следствием предпочтительного уменьшения среднего диаметра капельки в спрее является равномерное распределение спрея. Причиной является меньшая плотность распределения капелек как результат гомогенности спрея. Отсюда вытекает снижение вероятности коагуляций капелек. Другие преимущества упомянуты при описании примеров выполнения. Способ изготовления диска с отверстиями по изобретению с отличительными признаками пункта 27 формулы изобретения имеет преимущество, состоящее в том, что диски с отверстиями можно изготавливать репродуцируемым способом одновременно с высокой точностью, очень дешево и в большом количестве, при этом, поскольку они выполнены из металла, то обладают определенным запасом прочности, являясь простыми и дешевыми, и могут монтироваться, например, путем приваривания к металлическим конструктивным элементам, например клапанным форсункам. Технологические операции по изобретению дают широкие возможности в части формы конструктивного выполнения, поскольку контуры отверстий в диске с отверстиями выбираются свободно. Предпочтительным образом, при этом комбинируются такие способы, как глубинная УФ-литография, сухое травление или аблятирование с помощью микрогальваники, для осаждения друг на друга тонких металлических слоев со все новыми структурами. Этот процесс пригоден для создания двух, трех или более слоев для одного диска с отверстиями. С помощью приведенных в дополнительных пунктах формулы изобретения признаков становятся возможными другие предпочтительные и усовершенствованные формы указанного в пункте 27 формулы изобретения способа получения диска с отверстиями. Особое преимущество состоит в создании в процессе технологической операции гальванической обработки, по меньшей мере, одного слоя диска с отверстиями, охватывающего две плоскости или же две функциональные плоскости, причем применяется так называемое “боковое разрастание” гальваники. При этом без дополнительного нанесения стартового гальванического слоя и нового слоя фоторезиста рост металла целенаправленно продолжается за пределами структуры фоторезиста предшествующей плоскости. С помощью “бокового разрастания” достигается четкая экономия расходов и времени. Чертежи Примеры выполнения изобретения представлены на чертеже в упрощенном виде и более подробно пояснены в последующем описании. На фиг. 1 показана изображенная частично клапанная форсунка, имеющая диск с отверстиями по изобретению, на фиг. 2 – диск с отверстиями в виде снизу, на фиг. 3 – диск с отверстиями в разрезе по III – III по фиг. 2, на фиг. 4 – зона протекающей среды трехслойного диска с отверстиями, на фиг. 5 – зона протекающей среды трехслойного диска с отверстиями с первым продолжением канала, на фиг. 6 – зона протекающей среды трехслойного диска с отверстиями со вторым продолжением канала, на фиг. 7 – зона протекающей среды пятислойного диска с отверстиями с продолжениями канала, на фиг. 8 – зона протекающей среды четырехслойного диска с отверстиями с продолжениями канала, на фиг. 9 – схематический вид сверху на диск с отверстиями с боковыми продолжениями канала, на фиг. 10 – зона протекающей среды диска с отверстиями с задерживающей ловушкой, на фиг. 11 – диск с отверстиями в виде снизу, на фиг. 12 – диск с отверстиями в разрезе по XII-XII по фиг. 11, на фиг. 13 – диск с отверстиями в виде снизу, на фиг. 14 – другой диск с отверстиями в виде сверху с немногогранными отверстиями, на фиг. 15 – диск с отверстиями в разрезе по XV-XV по фиг. 14 с изображенными схематическими инструментами (в обратном направлении потока), на фиг. 16-20 – технологические операции по изготовлению диска с отверстиями с помощью полислойной гальваники, на фиг. 21 – диск с отверстиями после бокового разрастания, на фиг. 22 – изображение в разрезе диска с отверстиями с различными диаметрами отдельных слоев, на фиг. 23 – вид сверху на центральную зону диска с отверстиями, представленного в разрезе на фиг. 22, на фиг. 24 – следующий диск в виде сверху, на фиг. 25-27 – три центральные зоны дисков с отверстиями с соответствующим прямоугольным впускным отверстием, на фиг. 28 – диск с отверстиями в виде сверху с асимметричным распределением зон отверстия, на фиг. 29 и 30 – две центральные зоны дисков с отверстиями с асимметричным распределением зон отверстия, на фиг. 31 – центральная зона диска со сплошными круглыми отверстиями, на фиг. 32 – центральная зона диска с отверстиями с шестнадцатью серповидными впускными отверстиями и на фиг. 33 – центральная зона диска с приблизительно полукруглым впускным отверстием и серповидными выпускными отверстиями. Описание примеров выполнения На фиг. 1 в качестве примера выполнения частично изображен клапан в форме клапанной форсунки для систем впрыска топлива двигателей внутреннего сгорания со сжатием рабочей смеси и с принудительным зажиганием. Клапанная форсунка имеет трубообразную опору 1 седла клапана, в которой концентрично относительно продольной оси 2 клапана выполнено удлиненное отверстие 3. В удлиненном отверстии 3 размещена, например, трубообразная игла 5 клапана, которая на своем расположенном по течению потока конце 6 соединена, например, с шарообразным закрывающим клапан телом 7, по периметру которого предусмотрены, например, пять лысок 8. Управление клапанной форсункой происходит известным образом, например с помощью электромагнита. Для аксиального перемещения иглы 5 клапана и, тем самым, для открытия против усилия неизображенной возвратной пружины или для закрытия клапанной форсунки служит обозначенная электромагнитная цепь с магнитной катушкой 10, якорем 11 и сердечником 12. Якорь 11 соединен с концом иглы 5 клапана, обращенным от закрывающего клапан тела 7, например, сварным швом, выполненным лазером, и ориентирован на сердечник 12. Для направления закрывающего клапан тела 7 во время аксиального движения служит направляющее отверстие 15 тела 16 седла клапана. В расположенный вниз по потоку, обращенный от сердечника 12 конец опоры 1 седла клапан в проходящем концентрично относительно продольной оси 2 клапана продольном отверстии 3 с помощью сварки плотно установлено имеющее цилиндрическую форму тело 16 седла клапана. На своей нижней торцевой стороне 17, обращенной от закрывающего клапан тела 7, тело 16 седла клапана концентрично и жестко соединено с выполненным, например, чашеобразно опорным диском 21, который непосредственно прилегает к телу 16 седла клапана. При этом опорный диск 21 имеет форму, аналогичную уже известным чашеобразным дискам с распылительными отверстиями, причем средняя зона опорного диска 21 снабжена ступенчатым сквозным отверстием 22 для крепления в нем диска 23 с отверстиями согласно изобретению. Соединение тела 16 седла клапана и опорного диска 21 осуществляется, например, посредством проходящего вокруг, герметичного, выполненного с помощью лазера первого сварного шва 25. Посредством такого вида монтажа предотвращается опасность нежелательной деформации опорного диска 21 в его средней зоне со сквозным отверстием 22 и с встроенным в него диском 23 с отверстиями. Опорный диск 21 соединен, далее, со стенкой продольного отверстия 3 в опоре 1 седла клапана, например, сквозным и герметичным вторым сварным швом 30. Глубина вдвигания блока седла клапана, состоящего из тела 16 седла клапана и чашеобразного опорного диска 21, в продольное отверстие 3 определяет величину хода иглы 5 клапана, поскольку одно концевое положение иглы 5 клапана при невозбужденной магнитной катушке 10 определяется прилеганием закрывающего клапан тела 7 к плоскости 29 седла клапана тела 16 седла клапана. Другое концевое положение иглы 5 клапана определяется при возбужденной магнитной катушке 10, например, прилеганием якоря 11 к сердечнику 12. Путь между этими обоими концевыми положениями иглы 5 клапана представляет собой, таким образом, ход. Шарообразное закрывающее клапан тело 7 взаимодействует с поверхностью 29 седла клапана тела 16 седла клапана, которая сужается в направлении течения потока в форме усеченного конуса и которая выполнена в аксиальном направлении между направляющим отверстием 15 и нижней торцевой стороной 17 тела 16 седла клапана. Диск с отверстиями 23, размещенный в сквозном отверстии 22 опорного диска 21 и удерживаемый за счет опорного диска 21 непосредственно на торцевой стороне 17 тела 16 седла клапана, изображен на фиг. 1 лишь упрощенно и в качестве примера и описывается более подробно на приведенных ниже чертежах. Установка диска 23 с отверстиями в опорный диск 21 и зажим 31 в качестве крепления является возможным вариантом установки диска 23 с отверстиями в направлении по течению потока поверхности 29 седла клапана. Подобный зажим в качестве косвенного крепления диска 23 с отверстиями на теле 16 седла клапана имеет преимущество, состоящее в том, что предотвращается зависимая от температуры деформация, которая, при известных обстоятельствах, могла бы иметь место в случае таких способов, как сварка или пайка. Опорный диск 21 ни в коем случае не представляет собой, однако, исключительное условие для крепления диска 23 с отверстиями. Так как возможности крепления не являются существенными для изобретения, то здесь можно сделать лишь ссылку на известные традиционные способы стыкования, такие как сварка, пайка или склеивание. На фиг. 2 изображен диск 23 с отверстиями на виде снизу. Диск 23 с отверстиями выполнен в виде ровного, плоского, кругового и многослойного диска, почему его и можно назвать полислойным диском с распылительными отверстиями. В опорном диске 21 присутствует диск 23 с отверстиями, который, например, сцентрирован. Благодаря способу изготовления диска 23 с отверстиями согласно изобретению возникает структура, состоящая из множества слоев. Эта многослойность диска 23 с отверстиями четко просматривается на фиг. 3, которая представляет собой вид в соответствии с разрезом по III-III на фиг. 2. Короче говоря, здесь было бы уместно назвать уже некоторые существенные признаки, которые, кроме всего прочего, касаются также и способов, причем более подробная ссылка на способы по изобретению дается ниже. Изображенный на фиг. 2 и 3 диск 23 с отверстиями имеет структуру из трех металлических слоев, созданную путем гальванического осаждения. На основе глубинного литографического, гальванотехнического изготовления имеют место особые признаки при задавании контура: – слои с постоянной толщиной, которая не имеет отклонений по поверхности диска, – за счет глубокого литографического структурирования вертикальные надрезы в слоях, которые образуют соответствующие полости, по которым проходит поток, – желательные подрезы и перекрытия надрезов за счет многослойной структуры в отдельности структурированных металлических слоев, – надрезы с любыми формами поперечного сечения, имеющими осепараллельные стенки, как, например, прямоугольник, многоугольник, скругленный прямоугольник, скругленный многоугольник, эллипс, круг и т.д. Отдельные слои гальванически осаждаются друг за другом, так что последующий слой вследствие гальванического сцепления прочно соединяется с расположенным под ним слоем. Таким образом, в первом примере выполнения три круговых слоя, например, с одинаковым наружным диаметром, образуют диск 23 с отверстиями. Верхний слой 35 имеет, например, четыре прямоугольных, выполненных соответственно на одинаковом расстоянии относительно продольной оси 2 клапана или же относительно средней оси диска 23 с отверстиями впускных 36 отверстия, смещенные друг относительно друга на 90 град. Впускные 36 отверстия размещены по сравнению с диаметром диска 23 с отверстиями очень близко к продольной оси 2 клапана. На существенно большем расстоянии от продольной оси 2 клапана и, тем самым, при радиальном смещении относительно впускных 36 отверстий в нижнем слое 37 предусмотрены также четыре прямоугольных выпускных 38 отверстия. Выпускные 38 отверстия имеют, например, несколько меньшую ширину отверстия, чем впускные 36 отверстия. Две проходящие перпендикулярно друг другу и пересекающиеся у продольной оси 2 клапана оси 39 диска 23 с отверстиями делят впускные 36 отверстия, а также выпускные 38 отверстия где-то посередине, так что обе оси представляют собой оси симметрии имеющего симметричную структуру диска 23 с отверстиями. Вдоль осей 39 в среднем, расположенном между верхним и нижним слоем 35 и 37 слое 40 простираются радиальные каналы 42, которые образуют непосредственное соединение впускных 36 отверстий и выпускных 38 отверстий. Каналы 42, имеющие слегка трапецеидальную форму, имеют, например, такой размер, что они в проекции как раз перекрывают впускные 36 и выпускные 38 отверстия. Все четыре канала 42 расположены в этом примере выполнения отдельно друг от друга. На фиг. 2 и 3 штрихпунктирными линиями обозначены другие возможные варианты, при которых каналы 42 имеют разные, четко большие радиальные размеры, так что затем каналы 42 через выпускные 38 отверстия нижнего слоя 37 четко выходят наружу в радиальном направлении (см. фиг. 5 и 6). При диаметре 4-5 мм диск 23 с отверстиями имеет, например, толщину 0,5 мм, причем верхний и нижний слой 35 и 37, например, имеет толщину соответственно 0,1 мм, а толщина среднего слоя 40 составляет 0,3 мм. Эти величины, касающиеся размеров диска 23 с отверстиями, а также все другие указанные в описании размеры служат лишь для лучшего понимания и ни в коей мере не ограничивают изобретения. Также и относительные отклонения размера отдельных структур диска 23 с отверстиями даны на всех фигурах необязательно в масштабе. Благодаря уже имеющемуся радиальному смещению выпускных отверстий 38 относительно впускных 36 отверстий получают S-образное направление потока среды, например горючего. На основании фиг. 4, которая еще раз выделяет зону прохождения потока диска 23 с отверстиями в аксиальном сечении с впускным 36 отверстием, каналом 42 и выпускным 38 отверстием, поясняются принципиальные условия обтекания. Стрелки, характеризующие направление прохождения потока, четко показывают S-образную форму, поэтому также и в случае дисков 23 с отверстиями по изобретению речь идет о дисках типа S. Таким образом, через диск 23 с отверстиями поток проходит от впускного 36 отверстия до соответствующего ему выпускного 38 отверстия. Исходя от впускного 36 отверстия, поток направляется в каждом впускном 36 отверстии через соответствующий проходящий горизонтально канал 42 наружу в радиальном направлении. В конце канала в примере по фиг. 4 находится выпускное 38 отверстие. Через радиально проходящий канал 42 среда получает радиальную составляющую скорости. Быстро проходя через аксиальное выпускное отверстие, поток неполностью теряет свою радиальную составляющую скорости. Более того, он выходит из диска 23 с отверстиями при одностороннем отрыве у стенки выпускного 38 отверстия, обращенной к впускному 36 отверстию, под углом к продольной оси клапана или же к средней оси 2. Комбинация множества, например, ориентированных асимметрично друг другу отдельных струй, которые можно получить благодаря соответствующему расположению и ориентации множества конструктивных единиц из впускных и выпускных отверстий 36 и 38 и каналов 42, позволяет создавать совершенно новые, индивидуальные, комплексные общие формы струй с различным распределением количеств. С помощью так называемого S-образного витка внутри диска 23 с отверстиями со множеством сильных отклонений потока поток проявляет сильную турбулентность, способствующую распылению. В результате этого особенно четко обрисован перепад скоростей поперек потока. Он выражает изменение скорости поперек потока, причем скорость в середине потока четко больше, чем вблизи стенок. Вытекающие из разницы скоростей повышенные напряжения сдвига слоев жидкости в текучей среде способствуют распаду на мелкие капельки вблизи выпускных 38 отверстий. Поскольку поток на выходе отрывается в одностороннем порядке, то из-за отсутствующего направления по контуру он не получает успокоения. Особенно высокую скорость текучая среда имеет на стороне отрыва, в то время как скорость текучей среды падает на направлению к стороне выпускного 38 отверстия с прилегающим потоком. Таким образом, завихрения, способствующие распылению, и напряжения сдвига слоев жидкости на выходе не уничтожаются. На фиг. 5 и 6 представлены примеры выполнения дисков 23 с отверстиями, у которых каналы 42 в среднем слое 40 проходят не только от впускных 36 отверстий вплоть до выпускных 38 отверстий, но и через выпускные 38 отверстия наружу в направлении наружного ограничения дисков 23 с отверстиями. Эти удлинения каналов 42 обозначаются ниже как продолжения 43 каналов (cavities). Что касается принципа направления потока и воздействия на формообразование струи и распыление, то здесь действуют в принципе уже сделанные высказывания. Жидкость, текущая в выпускное 38 отверстие, проскальзывает, далее, мимо продолжения 43 канала (cavity) и создает в продолжении 43 канала завихрение потока. Взаимодействие между завихрением и образующимся потоком приводит к временной нестабильности в зоне взаимодействия. Периодически завихрение изменяет свою величину и, нарастая, вытесняет скользящий мимо поток (соответственно при уменьшении завихрения происходит обратный процесс). Таким образом, выходящий поток периодически отклоняется от заданного направления я побуждает образование колебаний. Частота и амплитуда осциллирующих колебаний в выходящем потоке зависят при этом от формы выполнения продолжения 43 канала, а именно от радиальной глубины “c” и высоты “h”, которая получается за счет толщины среднего слоя 40. В показанном на фигуре 5 примере выполнения имеет силу, например, равенство c = h, в то время как в примере по фигуре 6 для величины продолжения 43 канала имеет силу равенство c = 2 ![]() 1. Ламинирование твердого фоторезиста при температуре, например, около 100oC. 2. Центробежная наплавка жидкого фоторезиста. 3. Центробежная наплавка полиимида в жидком состоянии. После сушки фоторезист 63 присутствует во всех трех вариантах в твердой форме. Толщина фоторезиста 63 должна при этом соответствовать толщине металлического слоя, который должен быть реализован в последующем гальваническом процессе, а именно толщине нижнего слоя 37 диска 23 с отверстиями. Обычно следует стремиться к значениям толщины слоя, равным 10 – 300 мкм, в зависимости от желаемой толщины слоев диска 23 с отверстиями. Реализуемая металлическая структура с помощью фотолитографической маски 64 должна переноситься обратно в фоторезист 63. Во-первых, имеется возможность экспонировать фоторезист 63 непосредственно через маску 64 с помощью УФ-экспонирования (глубинная УФ-литография). Другая возможность структурирования фоторезиста 63 предусматривает, что на фоторезист 63 осаждается окись (например, SiO2) или нитрид, который фотолитографически структурированным служит в качестве маски для процесса сухого травления фоторезиста 63. Кроме того, имеется возможность лазерной абляции, причем после нанесения маски материал фоторезиста 63 снимается с помощью лазера по типу взрыва. Данные названные выше операции способа наглядно приведены на фиг. 16. После проявления экспонированного ультрафиолетовыми лучами фоторезиста 63 или же после применения других упомянутых способов (сухое травление, аблятирование) в фоторезисте 63 возникает заранее определенная посредством маски 64 структура, которая показана на фиг. 17. Эта структура в фоторезисте 63 представляет собой негативную структуру 66 к более позднему слою 37 диска 23 с отверстиями. Фигура 18 показывает структуру после гальванического наполнения возникших в фоторезисте 63 выемок 68, по меньшей мере до верхней кромки фоторезиста 63. Таким образом, во время технологической операции гальванизирования в выемках 68 резистов на подложке 60 осаждается металл 70. Металл 70 вследствие гальванизации плотно прилегает к контуру негативной структуры 66, так что заданные контуры репродуцируются в нем с точным соблюдением формы. Для изготовления многослойных структур дисков с отверстиями высота нанесенного в процессе гальванизирования слоя металла 70 должна соответствовать высоте фоторезиста 63. Структура 63 фоторезиста может быть в зависимости от желаемого дизайна также выше, чем желаемый слой, нанесенный в процессе гальванизирования. В результате этого может быть также улучшено распределение толщины гальванизированного слоя. Выбор осаждаемого материала зависит от соответствующих требований, предъявляемых к слою, причем особенно такие факторы, как механическая прочность, химическая стойкость, свариваемость и другие, являются важными. Обычно используются Ni, NiCo, NiFe или Cu, однако возможно применение и других металлов и сплавов. Для реализации структуры диска 23 с отверстиями следует снова повторить операции, начиная с опционального нанесения вспомогательного слоя 61, 61′, 61” в соответствии с числом желаемых слоев. Это показано на фиг. 19, причем слой фоторезиста 63′ служит, например, для образования последующего среднего слоя 40 диска 23 с отверстиями. Ссылочные позиции, имеющие в обозначении штрих, указывают на повторный процесс. Отдельные слои металла осаждаются друг на друга и удерживаются путем металлического сцепления. Для слоев одного диска 23 с отверстиями могут использоваться также различные металлы 70. Затем происходит отсекание дисков 23 с отверстиями. Для этой цели травлением снимается жертвенный слой 61, вследствие чего диски 23 с отверстиями снимаются с подложки 60. После этого нанесенные в процессе гальванизирования стартовые слои 61′ удаляются травлением, а оставшийся фоторезист 63, 63′ удаляется из металлических структур растворением. Это может происходить, например, путем обработки КОН или с помощью кислородной плазмы или же посредством растворителей (например, ацетона) у полиимидов. Эти процессы удаления растворением фоторезиста 63, 63′ повсюду известны под понятием “стрипперирование”. В качестве альтернативного решения возможно также механическое удаление носителя 60 при соответствующем выборе нанесенного гальванизированием стартового слоя 61′, например, с помощью магнитов. Фиг. 20 показывает в качестве примера трехслойный, отделенный от носителя 60 диск 23 с отверстиями, причем высота впускных 36 отверстий и выпускных 38 отверстий обычно бывает меньше. На фиг. 21 представлен следующий пример выполнения диска 23 с отверстиями “типа S”, который изготавливается по технологии, отличающейся от только что описанной. Эта новая технология может быть обозначена понятием “бокового разрастания”. Способ “бокового разрастания” позволяет выполнять две изображенные плоскости диска 23 с отверстиями, соприкасающиеся друг с другом, в предыдущей форме выполнения обозначенные как слои, в процессе одной технологической операции с помощью гальванического осаждения, причем, например, в случае “диска с отверстиями, имеющего три слоя”, нет необходимости в проведении процесса гальванизации в третий раз. Обе плоскости, образованные путем “бокового разрастания”, не являются, таким образом, в полном смысле слова слоями, созданными отдельно друг от друга, а представляют собой лишь один слой в смысле отдельного нарастания без промежуточного ограничения. Изготовление нижнего слоя 37 происходит сначала известным образом, как это видно из фиг. 16-18. Гальванически осаждаемый металл 70 разрастается затем в известной форме вокруг структуры 63′ фоторезиста второго слоя до верхней кромки фоторезиста 63′ (фиг. 19). После этого гальваническое осаждение разрастается за пределы фоторезиста 63′. Разрастание структуры 63′ фоторезиста осуществляется в горизонтальном и вертикальном направлении приблизительно в одинаковом порядке величины. Это разрастание заменяет нанесение следующего гальванического стартового слоя 61′ и третий гальванический слой, поскольку два слоя 35, 40 будущего диска 23 с отверстиями получают в процессе гальванизации. Высота разрастания устанавливается так, что образовавшиеся впускные 36 отверстия в верхнем растущем слое 35′ соответствуют требованиям, предъявляемым к дискам типа S, то есть имеют смещение относительно выпускных отверстий 38. Процесс разрастания прерывается самое раннее тогда, когда выпускные 38 отверстия полностью перекрываются материалом нарастающего слоя 35′. Таким образом, при этом способе обрастают два слоя фоторезиста 63, 63′, которые задают величину выпускных 38 отверстий и каналов 42. Предоставляется также возможность определять размер впускных отверстий 36 с помощью фоторезиста 63′ в качестве следующего структурированного слоя лака. Для этого имеется структура 63, 63′ фоторезиста в трех плоскостях. Этот третий слой фоторезиста 63′ служит, наконец, в качестве “толчка” для бокового разрастания слоя 35′ для дефинированного выполнения впускных 36 отверстий. Таким образом можно получать круглые, овальные или многоугольные впускные 36 отверстия. С помощью “бокового разрастания” четко сокращается время изготовления диска 23 с отверстиями. Кроме того, уменьшается шероховатость поверхности гальванического слоя. Однако же с увеличением числа наносимых слоев увеличивается шероховатость гальванической поверхности. При этом отпадает необходимость в дополнительных мерах по снятию микронеровностей, например с помощью электрополирования. Следующее преимущество бокового разрастания состоит в том, что для формования выпускных отверстий 36 необязательно наносить новый гальванический стартовый слой 61′ на не обладающий электрической проводимостью фоторезист 63′. На фиг. 22-33 представлены следующие примеры выполнения дисков 23 с отверстиями, которые должны поясняться лишь в краткой форме, поскольку они обладают всеми основными признаками “диска типа S” и имеют лишь интересный дизайн или же формы выполнения. Все эти последующие примеры выполнения дисков могут быть реализованы с помощью более подробно описанного способа гальванического осаждения металла. Фиг. 22 и 23 изображают диск 23 с отверстиями, который опять же по меньшей мере частично изготовлен с помощью бокового разрастания. При этом верхний слой 35′ имеет, по меньшей мере, две функциональные поверхности, то есть одну плоскость, в которой проходит канал 42′, и расположенную над ней плоскость, имеющую впускное 36 отверстие. Нижний слой 37 имеет, например, существенно больший диаметр, чем верхний слой. В то время как впускное 36 отверстие имеет круглое поперечное сечение, четыре выпускные 38 отверстия размещены серпообразно в форме дуги окружности. Находящийся в нижней плоскости верхнего слоя 35′ канал 42 выполнен так же, как и впускное 36 отверстие, круглым, а именно с диаметром, который несколько больше, чем наружный диаметр серповидных выпускных 38 отверстий. Так называемый S-образный виток текучей среды происходит в данной системе по направлению радиально наружу. В результате этого получают радиально-симметричную картину струи с хорошим распылением. На фиг. 24 изображен диск 23 с отверстиями на виде сверху, благодаря которому становится возможным выход плоской струи. Четыре впускных 36 отверстия в верхнем слое 35 выполнены прямоугольной формы. Каждому впускному отверстию 36 точно подчинен один канал 42 и одно выпускное отверстие 38. Выпускные 38 отверстия выполнены, например, квадратной и прямоугольной формы. Каналы 42, полностью перекрывающие впускные 36 и выпускные 38 отверстия в проекции, имеют шестиугольный контур, который может меняться в соответствии с величиной впускных и выпускных отверстий 36 и 38. Смещения впускных и выпускных отверстий 36 и 38 выбраны таким образом, что происходит хорошая обработка плоскими струями в двух направлениях. Как и фиг. 24, фиг. 25-27 также изображают диски 23 с отверстиями на виде сверху, с помощью которых и получают плоские струи. В качестве упрощенных чертежей эти фигуры показывают лишь центральную среднюю зону диска 23 с отверстиями. Канал 42′ выполнен соответственно таким образом, что он соединяет одно впускное 36 отверстие со всеми выпускными 38 отверстиями. Текучая среда входит через центральное прямоугольное впускное 36 отверстие. Выпускные отверстия 38 выполнены, например, также с прямоугольным или квадратным контуром, причем направления продольного распространения прямоугольных выпускных 38 отверстий могут быть параллельными или перпендикулярными направлению продольного распространения впускного отверстия 36. В любом случае из такого смещения опять же получается картина плоской струи. За счет вариантности размера впускного отверстия 36, расположения, количества и формы выпускных отверстий 38 форма струи может быть приведена в соответствие с предъявляемыми требованиями. Фиг. 28 изображает диск 23 с отверстиями, который сильно напоминает диск 23 с отверстиями, представленный на фигуре 24, в части геометрии и размера отдельных зон отверстия. Для особых целей применения, как, например, для необычных встроенных слоев клапанных форсунок в двигателях внутреннего сгорания, желательно иметь не только выходящую из диска 23 с отверстиями плоскую струю, но и разбрызгивание под определенным углом относительно продольной оси клапана – средней оси 2 (фиг. 1 и 3). Такую возможность предоставляет диск 23 с отверстиями по фиг. 28. Соответствующий функциональный узел впускного отверстия 36, канал 42 и выпускное отверстие 38 дают опять же возможность для образования распылительного конуса с направлении S-образного витка. В данном примере выполнения предусмотрены четыре подобных функциональных узла. Если подобные распылительные конусы или же конусы струи соответствующим образом объединить, то общую картину струи можно очень хорошо приспособить к соответствующим действительным условиям. С помощью изображенного на фиг. 28 диска 23 с отверстиями можно производить целенаправленное разбрызгивание в двух направлениях, причем обе отдельных струи направлены не строго противоположно друг другу. На фиг. 29 и 30 представлены центральные зоны разбрызгивания дисков 23 с отверстиями, с помощью которых можно также получить необычные рисунки струи. Диски 23 с отверстиями имеют соответственно три функциональные группы с одним впускным отверстием 36, одним каналом 42 и одним выпускным отверстием 38. В зависимости от желаемого рисунка струи функциональные группы размешены асимметрично или эксцентрично вокруг проходящей через точку пересечения обеих осей 39 средней оси 2 диска 23 с отверстиями. С помощью этого кажущегося беспорядочным распределения можно очень хорошо достичь индивидуальных направлений струй. В случае диска с отверстиями по фигуре 29 канал 42 с имеющим форму кругового сектора контуром соединяет круговое впускное отверстие 36 с серповидным выпускным отверстием 38. И наоборот, зоны отверстия на диске 23 с отверстиями по фигуре 30 выполнены с углами. Текучая среда входит, например, через квадратные впускные отверстия 36, течет затем через шестиугольные каналы до выполненных прямоугольными выпускных отверстий 38. Два канала 42, подчиненные впускным отверстиям 36, могут, например, проходить таким образом, что они будут объединяться в зоне выпускных отверстий 38, при этом текучая среда будет выходить ив диска 23 с отверстиями лишь через V-образное выпускное отверстие 38. Число впускных отверстий 36 ни в коем случае не может совпадать с числом выпускных отверстий 38. Диски 23 с отверстиями, у которых предусмотрено неодинаковое количество впускных 36 и выпускных 38 отверстий, также изображены на фиг. 31-33. Пример выполнения согласно фиг. 31 наглядно показывает устройство с круговыми зонами отверстий. Текучая среда может входить через центральное круговое впускное отверстие 36 верхнего слоя 35 и покидает диск 23 с отверстиями через четыре также круговых выпускных отверстия 38, которые в нижнем слое 37 выполнены симметрично вокруг впускного отверстия 36. Один круговой канал 42′ выбран такого размера, что им полностью перекрываются все выпускные отверстия 38. На фиг. 32 изображен диск 23 с отверстиями, который имеет четыре функциональные группы с зонами отверстий. Текучая среда входит через четыре относящиеся к каждой функциональной группе, – и, тем самым, в сумме через шестнадцать – серповидных впускных отверстий 36 в диске 23 с отверстиями. Соответствующим образом четырем впускным отверстиям 36 точно подчинен круговой канал 42′, который имеет, например, такой большой диаметр, что он полностью перекрывает серповидные впускные отверстия 36. В каждой функциональной группе отформовано только одно выпускное отверстие 38, которое выполнено в форме круга и в проекции охвачено серповидными впускными отверстиями 36. Четыре функциональные группы размещены, например, лежа на осях 39, симметрично средней оси 2. На фиг. 33 показан диск 23 с отверстиями, который имеет совершенно асимметричное расположение зон отверстия. Расположенное в центре впускное отверстие 36 отформовано с контуром, имеющим форму приблизительно полукруга, в то время как имеющие явно меньший размер выпускные отверстия 38 располагаются на скругленной стороне впускного отверстия 36 в нижнем слое 37 в виде серпа. Число выпускных отверстий 38 может варьироваться, в представленном примере предусмотрены три выпускных отверстия 38. Круговой канал 42′ выполнен опять же такого размера, что им перекрываются все другие отверстия. Все описанные диски 23 с отверстиями предусмотрены не исключительно для использования на клапанных форсунках; более того, они могут найти применение, например, в окрасочных соплах, ингаляторах, печатающих устройствах с чернильной записью или в способах сублимационной сушки. Для получения мелкого спрея, например, с большими углами, пригодны диски 23 с отверстиями. Наряду с детально описанными способами изготовления дисков 23 с отверстиями с помощью микрогальваники для изготовления дисков типа S, имеющих описанный выше контур, возможно использование и других способов, таких как электроэрозионная прошивка, электроэрозионная проволочная обработка, лазерная резка, штамповка, напыление металла, спекание или литье под давлением. Поэтому на фиг. 15 схематично изображено несколько инструментов, которые должны сделать более наглядными эти другие способы изготовления. Благодаря использованию позиционирующих устройств 56 при соединении отдельных металлических дисков становится возможным точное позиционирование их друг относительно друга. Однако отдельные слои диска 23 с отверстиями обрабатываются перед стыковкой отдельно друг от друга, при штамповке, например, с помощью пуансонов 73 штампа или же при электроэрозионной обработке с помощью электродов-инструментов 74. Наряду с использованием металлического материала для дисков с отверстиями по изобретению возможно также использование для дисков типа S керамического материала. Формула изобретения
29.03.95 по пп.1 – 25, 27 – 36; 27.02.96 по п.26. РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 24.03.2004
Извещение опубликовано: 20.10.2005 БИ: 29/2005
|
||||||||||||||||||||||||||