Патент на изобретение №2307785

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2307785 (13) C1
(51) МПК

B82B3/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.11.2010 – действует

(21), (22) Заявка: 2006109290/28, 24.03.2006

(24) Дата начала отсчета срока действия патента:

24.03.2006

(46) Опубликовано: 10.10.2007

(56) Список документов, цитированных в отчете о
поиске:
Kolesnikov N.N. et al.Growth of CdTe nanocrystals by vapor deposition method. Nuclear Instr. And Meth. In Phys. Research A., 2004, v.527, №1-2, p.73-75. Колесников Н.Н. Универсальная технология выращивания кристаллов широкозонных II-VI соединений. – Наука-производству, 2004, №12(80), с.56-60. RU 2143014 C1, 20.12.1999. SU 659639 А, 30.04.1979. ЕР 0650791 А1, 03.05.1995.

Адрес для переписки:

142432, Московская обл., г. Черноголовка, ул. Институтская, 2, ИФТТ РАН

(72) Автор(ы):

Колесников Николай Николаевич (RU),
Кведер Виталий Владимирович (RU),
Борисенко Дмитрий Николаевич (RU),
Борисенко Елена Борисовна (RU),
Гартман Валентина Кирилловна (RU),
Тимонина Анна Владимировна (RU)

(73) Патентообладатель(и):

ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ТУЛЛУРИДА ЦИНКА-КАДМИЯ С СОСТАВОМ Cd0,9Zn0,1Te

(57) Реферат:

Изобретение относится к области получения полупроводниковых материалов и может быть использовано в нанотехнологиях, связанных с применением нанопорошков. Сущность изобретения: получение нанопорошка теллурида цинка-кадмия с составом Cd0,9Zn0,1Te проводится путем осаждения из газовой фазы в потоке гелия. При этом источник испарения имеет состав Cd0,5Zn0,5Te, температура источника испарения составляет 800-850°С, температура в зоне осаждения 540-610°С, а скорость потока гелия должна находится в интервале 1000-1500 мл/мин. Таким образом, получается нанопорошок теллурида цинка-кадмия, имеющий состав Cd0,9Zn0,1Te и размер частиц основной фракции 10 нм. 1 ил., 1 табл.

Изобретение относится к области получения полупроводниковых материалов и может быть использовано в нанотехнологиях, связанных с применением нанопорошков.

Теллурид цинка-кадмия с составом Cd0,9Zn0,1Te производится в настоящее время в виде объемных кристаллов, применяемых в детекторах ионизирующих излучений. Быстрое развитие нанотехнологий вызывает интерес к нанокристаллам таких полупроводников, в частности к нанопорошкам, т.е. к порошкам с размером зерна в несколько нанометров.

Известен способ получения теллурида цинка-кадмия Cd1-xZnxTe (х=0,04-0,2) [Н.Н.Колесников. Универсальная технология выращивания кристаллов широкозонных II-VI соединений. Наука-производству, 2004, №12(80), с.56-60 – аналог], включающий выращивание кристаллов из расплава под давлением инертного газа. Основной недостаток этого способа состоит в том, что он позволяет изготавливать только макроскопические объемные кристаллы и не позволяет получать нанопорошок теллурида цинка-кадмия.

Наиболее близким по технической сущности к предлагаемому является способ получения нанопорошка теллурида кадмия (CdTe) с размером частиц 10 нм [N.N.Kolesnikov, V.V.Kveder, R.В.James, D.N.Borisenko, M.P.Kulakov. Growth of CdTe nanocrystals by vapor deposition method. Nuclear Instr. and Meth. in Phys. Research A., 2004, v.527, № 1-2, p.73-75 – прототип], включающий осаждение из газовой фазы в потоке гелия с использованием реактора с источником испарения, имеющим состав CdTe. В этом способе температура источника паров CdTe составляет 740-760°С, температура в зоне осаждения нанопорошка – 500°С, а скорость потока гелия – 1600-2250 мл/мин.

Основным недостатком этого способа является то, что он позволяет получать только нанопорошок теллурида кадмия, а получение нанопорошка теллурида цинка-кадмия невозможно.

Задачей данного изобретения является получение нанопорошка теллурида цинка-кадмия с составом Cd0,9Zn0,1Te и размером частиц 10 нм.

Эта задача решается в предлагаемом способе получения нанопорошка теллурида цинка-кадмия путем осаждения из газовой фазы в потоке гелия с использованием реактора с источником испарения. При этом источник испарения имеет состав Cd0,5Zn0,5Te, температура источника испарения 800-850°С, температура в зоне осаждения 540-610°С, а скорость потока гелия 1000-1500 мл/мин.

Состав источника испарения выбран экспериментально, что иллюстрируется таблицей. Как видно из таблицы, строка 3, при составе источника испарения Cd0,5Zn0,5Te состав порошка в зоне осаждения соответствует заданному (Cd0,5Zn0,5Te). При этом избыточный ZnTe осаждается в коллекторе перед зоной осаждения (со стороны реактора) и может быть использован в дальнейшем для синтеза источников испарения.

При снижении содержания цинка в материале источника до Cd0,55Zn0,45Te (строка 2 таблицы) содержание цинка в нанопорошке снижается непропорционально (до Cd0,98Zn0,02Te) и состав нанопорошка не соответствует заданному. При этом избыточный ZnTe также осаждается в коллекторе перед зоной осаждения. При дальнейшем снижении содержания цинка в материале источника (до состава Cd0,6Zn0,4Te, строка 1 таблицы) образование теллурида цинка-кадмия в зоне осаждения не происходит, теллуриды цинка и кадмия осаждаются раздельно. При увеличении содержания цинка в источнике испарения до Cd0,4Zn0,6Te (строка 4 таблицы) в зоне осаждения образуется смесь фаз Cd1-xZnxTe различного состава и свободного CdTe. При этом наблюдается раздельное осаждение ZnTe в коллекторе перед зоной осаждения.

Эти экспериментальные результаты можно объяснить следующим. В литературе многократно описана полная или частичная диссоциация теллурида цинка-кадмия на компоненты при испарении (см., например, [N.N.Kolesnikov, R.В.James, N.S.Berzigiarova, M.P.Kulakov. HPVB and HPVZM shaped growth of CdZnTe, CdSe and ZnSe crystals. X-ray and gamma-ray detectors and applications IV. Proc. SPIE, 2002, v.4787, p.93-104]). Очевидно, что в условиях предлагаемого процесса испаряющийся материал источника диссоциирует с образованием паров теллурида цинка и теллурида кадмия. Пары, переносимые в зону осаждения потоком гелия, вновь реагируют с образованием теллурида цинка-кадмия. Однако, поскольку скорости переноса паров CdTe и ZnTe различны, состав нанопорошка в зоне осаждения отличается от состава источника. При снижении содержания цинка в источнике относительно предлагаемого состава Cd0,5Zn0,5Te сначала наблюдается непропорционально быстрое снижение содержания цинка в осаждаемом нанопорошке (см. таблицу, строка 2), а затем образование теллурида цинка-кадмия полностью прекращается (см. таблицу, строка 1), т.к. в зону осаждения уже не подается достаточного количества паров ZnTe. При увеличении содержания цинка в источнике относительно предлагаемого состава Cd0,5Zn0,5Te в зоне осаждения происходит образование смеси фаз Cd1-xZnxTe различного состава и свободного CdTe. Вероятно, это связано с неоднородным поступлением паров ZnTe в зону осаждения в имеющихся условиях процесса на фоне образующегося избытка паров CdTe.

Состав источника испарения Состав нанопорошка в зоне осаждения Примечания
1 Cd0,6Zn0,4Te CdTe Наблюдается раздельное осаждение ZnTe в коллекторе перед зоной осаждения (со стороны реактора)
2 Cd0,55Zn0,45Te Cd0,98Zn0,02Te Наблюдается осаждение избыточного ZnTe в коллекторе перед зоной осаждения (со стороны реактора)
3 Cd0,5Zn0,5Te Cd0,9Zn0,1Te Наблюдается осаждение избыточного ZnTe в коллекторе перед зоной осаждения (со стороны реактора)
4 Cd0,4Zn0,6Te Смесь фаз Cd1-xZnxTe различного состава и CdTe Наблюдается раздельное осаждение ZnTe в коллекторе перед зоной осаждения (со стороны реактора)

Температура источника испарения 800-850°С выбрана экспериментально. При температурах ниже 800°С материал источника диссоциирует, однако ZnTe практически не испаряется и в зоне осаждения образуется только нанопорошок CdTe. При температурах выше 850°С размер частиц порошка в зоне осаждения увеличивается (до 100-300 нм и более), и, тем самым, перестает соответствовать заданному. Аналогичное увеличение размера частиц с ростом температуры источника описано в способе-прототипе для случая получения нанопорошка CdTe. Температура в зоне осаждения 540-610°С выбрана экспериментально. При температурах ниже 540°С нанопорошок не образуется. В зоне осаждения растут микрокристаллы с размерами от 1 до 10 мкм. При температурах выше 610°С нанопорошок не образуется, т.к. пары CdTe и ZnTe практически не реагируют в газовой фазе, а уносятся потоком гелия в коллектор за зоной осаждения, где они конденсируются раздельно.

Скорость потока гелия выбрана экспериментально. При снижении скорости ниже 1000 мл/мин подача паров от источника в зону осаждения существенно замедляется и скорость образования нанопорошка теллурида цинка-кадмия падает ниже целесообразной. При увеличении скорости потока выше 1500 мл/мин значительная часть паров не успевает реагировать в зоне осаждения и уносится потоком гелия в коллектор за зоной осаждения.

Пример 1.

Навеска теллурида цинка-кадмия с составом Cd0,5Zn0,5Te помещается в зону испарения реактора. Реактор разогревается так, что температура в зоне испарения составляет 825°С, а в зоне осаждения – 575°С. В реактор подается газообразный гелий со скоростью 1250 мл/мин. По окончании процесса из зоны осаждения извлекается нанопорошок теллурида цинка-кадмия с составом Cd0,9Zn0,1Te и с размером частиц основной фракции 10 нм. На чертеже показано изображение такого порошка, полученное с помощью просвечивающей электронной микроскопии.

Пример 2.

Навеска теллурида цинка-кадмия с составом Cd0,5Zn0,5Te помещается в зону испарения реактора. Реактор разогревается так, что температура в зоне испарения составляет 800°С, а в зоне осаждения – 610°С. В реактор подается газообразный гелий со скоростью 1500 мл/мин. По окончании процесса из зоны осаждения извлекается нанопорошок теллурида цинка-кадмия с составом Cd0,9Zn0,1Te и с размером частиц основной фракции 10 нм.

Пример 3.

Навеска теллурида цинка-кадмия с составом Cd0,5Zn0,5Te помещается в зону испарения реактора. Реактор разогревается так, что температура в зоне испарения составляет 850°С, а в зоне осаждения – 540°С. В реактор подается газообразный гелий со скоростью 1000 мл/мин. По окончании процесса из зоны осаждения извлекается нанопорошок теллурида цинка-кадмия с составом Cd0,9Zn0,1Te и с размером частиц основной фракции 10 нм.

На чертеже представлена фотография нанопорошока Cd0,9Zn0,1Te. Изображение получено с помощью просвечивающей электронной микроскопии

Формула изобретения

Способ получения нанопорошка теллурида цинка-кадмия с составом Cd0,9Zn0,1Te осаждением из газовой фазы в потоке гелия с использованием реактора с источником испарения, отличающийся тем, что источник испарения имеет состав Cd0,5Zn0,5Te, а процесс проводится при температуре источника испарения 800-850°С, температуре в зоне осаждения 540-610°С и скорости потока гелия 1000-1500 мл/мин.

РИСУНКИ

Categories: BD_2307000-2307999