Патент на изобретение №2305172

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2305172 (13) C1
(51) МПК

E21B36/04 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 29.11.2010 – действует

(21), (22) Заявка: 2006100961/03, 10.01.2006

(24) Дата начала отсчета срока действия патента:

10.01.2006

(46) Опубликовано: 27.08.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 14474 U1, 27.07.2000. RU 10000 U1, 16.05.1999. RU 2096772 С1, 20.11.1997. RU 2194855 С1, 20.12.2002. RU 2249096 С1, 27.03.2005. RU 2249672 С1, 10.04.2005. RU 2263763 С1. 10.11.2005. RU 2171363 С1, 27.07.2001. US 4616705 A, 14.10.1986. US 4704514 A, 03.11.1987. WO 92/08036 A1, 14.05.1992.

Адрес для переписки:

614066, г.Пермь, ул. Советской Армии, 29, ООО “ПермНИПИнефть”, сектор патентно-лицензионной работы

(72) Автор(ы):

Вдовин Эдуард Юрьевич (RU),
Алексеев Андрей Александрович (RU)

(73) Патентообладатель(и):

Общество с ограниченной ответственностью “ПермНИПИнефть” (RU)

(54) АВТОМАТИЗИРОВАННЫЙ САМОРЕГУЛИРУЮЩИЙСЯ НАГРЕВАТЕЛЬ ДЛЯ ПРОГРЕВА ТЕКУЧЕЙ СРЕДЫ В СКВАЖИНЕ

(57) Реферат:

Изобретение относится к области нефтедобычи. Технический результат – повышение точности и надежности управления нагревом текучей среды в скважине с различными способами добычи за счет возможности контроля теплового поля скважины при расширенном объеме получаемой информации состояния текучей среды в затрубном пространстве скважины, внутри насосно-компрессорных труб (НКТ) и на наружной поверхности НКТ, при одновременной простоте монтажа и эксплуатации. Нагреватель выполнен в виде кабельной линии (КЛ), состоящей из низкотемпературного кабеля и высокотемпературного – нагревательного – кабеля, токопроводящие жилы с одного конца которого соединены между собой и изолированы для образования концевой заделки. Другой конец нагревательного кабеля соединен с источником питания. При этом КЛ установлена снаружи НКТ или кабель спирально намотан на НКТ. Нагреватель также содержит наземный измерительно-управляющий блок, представляющий собой, например, программируемый частотный электронный модуль управления, и внутрискважинный измерительный блок, состоящий по меньшей мере из одного датчика (кварцевый резонатор) для считывая термобарических параметров текучей среды. Указанные датчики предназначены для преобразования текущих значений температуры и/или давления в частоту, соединены с измерительно-управляющим блоком посредством КЛ и установлены на теле НКТ и/или на теле ее соединительной муфты в зависимости от потребности измерения параметров текущей среды внутри НКТ и/или в затрубном пространстве. 10 з.п. ф-лы, 2 ил.

Изобретение относится к области нефтедобычи, преимущественно к области оборудования скважин нагревательными кабелями, и может быть использовано для электропрогрева трубопровода с текучей средой в скважине с одновременным контролем распределения теплового поля и затрубного давления по стволу нагнетательных и нефтедобывающих скважин, осложненных различного вида отложениями, при обеспечении минимизации тепловых потерь.

Известен электрический нагреватель для прогрева текучей среды в скважине, состоящий из каротажного кабеля, на котором последовательно закреплены электронагреватель и датчик для считывания термического параметра текучей среды (термометр). Указанный нагреватель размещен внутри насосно-компрессорных труб (НКТ), которыми оборудована скважина, и предназначен, помимо прогрева текучей среды, еще и для обеспечения контроля за профилем притока текучей среды в скважину путем установления изменения ее температуры (путем снятия термограммы) (патент РФ №2194855, кл. Е21В 47/00, от 2001 г.).

Недостатком указанного известного нагревателя является недостаточная точность и надежность управления нагревом текучей среды в скважине вследствие ограниченного участка снятия термограммы, да к тому же не на нагреваемом участке скважины, а ниже него. Кроме того, известный нагреватель предназначен для использования в фонтанирующих скважинах и в скважинах, оборудованных электроцентробежным насосом, при других же способах добычи известный нагреватель применить невозможно.

Также известен электронагреватель для прогрева текучей среды в скважине, состоящий из электронагревателя, датчиков температуры, соединенных с наземным измерительным блоком (частотно-модуляционная система), и из трех герметичных цилиндров с размещенными между ними термоизоляционными экранами, при этом цилиндры размещены вдоль скважины, электронагреватель расположен в среднем цилиндре и в каждом из цилиндров установлен датчик температуры (патент РФ №2096772, кл. G01N 25/18, от 1996 г.).

Однако указанный известный электронагреватель не может быть использован в добывающей скважине ввиду больших геометрических размеров.

Известен ряд линейных нагревателей в виде нагревательного кабеля или в виде кабельной линии, в состав которой входит нагревательный кабель, токопроводящие жилы которого с одного конца соединены друг с другом и изолированы, а с другого конца соединены с источником питания (свидетельство РФ на полезную модель №10000, кл. Н01В 7/18, от 1998 г.; свидетельство РФ на полезную модель №14474, кл. Н01В 7/18, от 1999 г.). Указанные линейные нагреватели могут быть использованы при различных способах добычи.

Однако их недостатком является недостаточная точность процесса нагрева текучей среды в скважине и невозможность управления этим процессом.

Технический результат, достигаемый предлагаемым изобретением, заключается в повышении точности и надежности управления нагревом текучей среды в скважине с различными способами добычи: фонтанной, при оборудовании штанговым или электроцентробежным насосом, за счет возможности контроля теплового поля скважины при одновременной простоте монтажа и эксплуатации.

Указанный технический результат достигается предлагаемым автоматизированным саморегулирующимся нагревателем для прогрева текучей среды в скважине, оборудованной насосно-компрессорными трубами НКТ, содержащим установленный в скважине снаружи или внутри НКТ нагреватель в виде нагревательного кабеля или в виде кабельной линии, в состав которой входит нагревательный кабель, причем токопроводящие жилы указанного нагревателя с одного конца соединены друг с другом и изолированы, а с другого конца соединены с источником питания, наземный измерительно-управляющий блок и внутрискважинный измерительный блок, состоящий по меньшей мере из одного датчика для считывания термобарических параметров текучей среды и соединенный электропроводящей сигналопередающей линией связи с наземным измерительно-управляющим блоком, при этом указанный датчик установлен таким образом, чтобы его чувствительный элемент касался стенки НКТ или стенки муфты НКТ или находился в непосредственной близости от стенки НКТ или от стенки муфты НКТ, причем ориентирование чувствительного элемента датчика к наружной или к внутренней стенке НКТ или муфты зависит от потребности измерения термобарических параметров текучей среды внутри НКТ или в затрубном пространстве скважины.

В преимущественном варианте в качестве датчиков для считывания термобарических параметров текучей среды используют датчики температуры или датчики давления.

Также в качестве датчиков для считывания термобарических параметров текучей среды используют кварцевые резонаторы.

Возможно использование в качестве наземного измерительно-управляющего блока частотного электронного модуля управления.

В качестве электропроводящей сигналопередающей линии связи используют нагревательный кабель, или кабельную линию, или одножильный геофизический кабель.

В качестве электропроводящей сигналопередающей линии связи используют двухпроводную линию «токопроводящая жила – броня» кабеля.

При наличии датчиков более одного наземный измерительно-управляющий блок и электропроводящая сигналопередающая линия связи его с внутрискважинным измерительным блоком выполнены с возможностью одновременного считывания сигналов со всех указанных датчиков.

И при этом датчики для считывания термобарических параметров текучей среды соединены с наземным измерительно-управляющим блоком с обеспечением при работе постоянного непрерывного контакта при одном приемо-передающем канале для всех указанных датчиков.

Возможно выполнение наземного измерительно-управляющего блока в виде программируемого частотного электронного модуля управления, который включает в себя генератор шума, перестраиваемый входной резонансный усилитель, микропроцессорный блок управления нагревательным кабелем, микропроцессорный блок вычисления и жидкокристаллический дисплей.

Кроме того, нагреватель может быть выполнен в виде линейного нагревательного кабеля или в виде линейной кабельной линии, в состав которой входит нагревательный кабель.

Или нагреватель может быть выполнен в виде спирально намотанного на НКТ нагревательного кабеля или в виде спирально намотанной на НКТ кабельной линии, в состав которой входит нагревательный кабель.

Указанный технический результат достигается за счет следующего.

Благодаря дополнительному введению в конструкцию автоматизированного саморегулирующегося нагревателя, связанных между собой наземного измерительно-управляющего блока и внутрискважинного измерительного блока, состоящего по меньшей мере из одного датчика для считывания термобарических параметров текучей среды, обеспечивается поддержание температуры добываемой текучей среды в заданных границах, оптимизация энергопотерь при путевом прогреве, возможность высокочастотного измерения и контроля теплового поля скважины.

Благодаря установке чувствительного элемента датчика в непосредственной близости от стенки НКТ или стенки ее муфты, вплоть до касания, обеспечивается высокая точность и достоверность определения термобарических параметров текучей среды, так как коэффициент теплопроводности НКТ таков, что температура ее стенки практически соответствует температуре текучей среды.

Установка датчика именно таким образом позволяет упростить монтаж и сборку нагревателя.

Предлагаемое изобретение иллюстрируется двумя чертежами: на фиг.1 приведен общий вид автоматизированного саморегулирующегося линейного нагревателя, на фиг.2 – общий вид автоматизированного саморегулирующегося нагревателя со спиральной намоткой кабеля.

Заявляемый автоматизированный саморегулирующийся нагреватель (далее – АСН) состоит из нагревателя, например, линейного (фиг.1), выполненного, например, в виде кабельной линии 1, состоящей из низкотемпературного кабеля 2 и высокотемпературного – нагревательного – кабеля 3, токопроводящие жилы с одного конца которого соединены между собой (например, в «звезду») и изолированы для образования концевой заделки 4. Другой конец кабеля соединен с источником питания 5. Кабельная линия 1 установлена снаружи НКТ 6. Возможно выполнение нагревателя со спиральной намоткой кабеля на наружную поверхность НКТ (фиг.2). АСН также содержит наземный измерительно-управляющий блок 7, представляющий собой, например, программируемый частотный электронный модуль управления, и внутрискважинный измерительный блок 8, состоящий из одного или нескольких датчиков 9 для считывая термобарических параметров текучей среды 10. При этом в качестве датчика 9 можно использовать датчик температуры, например высокотемпературный кварцевый термочувствительный резонатор марки РКТВ-206, а также датчик давления, например кварцевый манометрический резонатор абсолютного значения марки РКМА-Р. Указанные датчики 9 предназначены для преобразования текущих значений температуры и давления в частоту, соединены с наземным измерительно-управляющим блоком 7 посредством кабельной линии 1 (может быть также соединен и посредством одножильного геофизического кабеля) и установлены таким образом, чтобы его чувствительный элемент 12 находился в непосредственной близости от стенки НКТ или от стенки муфты НКТ или в преимущественном варианте касался стенки НКТ 6 или стенки муфты 11 НКТ. В зависимости от потребности измерения термобарических параметров текучей среды 10 внутри НКТ 6 или в затрубном пространстве скважины 13 ориентирование чувствительного элемента 12 датчика 9 производится к наружной или внутренней стенке НКТ 6 или наружной или внутренней стенке муфты 11.

Работает предлагаемый автоматизированный саморегулирующийся нагреватель (АСН) следующим образом.

Непосредственно у скважины или на кабельном участке производится монтаж кабельной линии 1 из низкотемпературного кабеля 2 и нагревательного кабеля 3 путем их герметичного соединения друг с другом. После определения необходимой длины кабельной линии 1 производят концевую заделку 4 его свободного конца посредством выполнения соединения токопроводящих жил, например, в «звезду» и ее изоляцию. Кроме того, от токопроводящей жилы и брони нагревательного кабеля 3 кабельной линии 1 выполняют герметичные отводы для подключения датчиков 9 (кварцевых резонаторов) (в случае, если в качестве электропроводящей сигналопередающей линии связи используют двухпроводную линию «токопроводящая жила – броня кабеля»).

Перед спуском кабельной линии 1 в скважину производят наземные испытания изготовленной концевой заделки 4 на специальном стенде, на котором моделируют скважинные условия, а именно наличие агрессивной пластовой среды, температура +30-100°С, давление 20-23 МПа. Время испытаний составляет 18 часов. В случае отсутствия электрического пробоя кабельной линии 1 после испытаний ее спускают в скважину путем крепления хомутами к наружной поверхности насосно-компрессорных труб НКТ 6. При этом на соединительной муфте 11 (или на НКТ 6) устанавливают датчик 9 (или датчики 9) таким образом, чтобы его чувствительный элемент 12 касался наружной стенки НКТ 6 или наружной стенки муфты 11 НКТ или находился в непосредственной близости от стенки НКТ или стенки муфты НКТ. В этом случае измерение термобарических параметров текучей среды 10 будет производиться в затрубном пространстве скважины 13. При установке датчика 9 внутри НКТ 6 при ориентировании чувствительного элемента 12 к внутренней стенке НКТ 6 или муфты 11 измерение термодинамических параметров текучей среды 10 будет производиться внутри колонны НКТ.

После спуска в скважину всей кабельной линии 1 второй свободный конец ее подключают через наземный измерительно-управляющий блок 7 к источнику питания 5.

При подаче тока высокого напряжения происходит нагрев нагревательного кабеля 3 кабельной линии 1, который в свою очередь изменяет параметры текучей среды 10 внутри НКТ 6 и/или в затрубном пространстве 13 скважины.

Производят измерение параметров текучей среды 10 внутри НКТ 6 или в затрубном пространстве 13 скважины чувствительным элементом 12 датчика 9. Благодаря тому что чувствительный элемент 12 датчика 9 касается стенки НКТ 6 или стенки муфты 11 НКТ или находится в непосредственной близости от стенки НКТ или стенки муфты НКТ, производится замер температуры и давления пограничного слоя текучей среды 10, где в первую очередь происходит отложение АСПВ. При помощи датчика 9 сигнал попадает на наземный измерительно-управляющий блок 7, например программируемый частотный электронный модуль управления, который включает в себя генератор шума, перестраиваемый входной резонансный усилитель, микропроцессорный блок управления нагревательным кабелем 3, микропроцессорный блок вычисления и жидкокристаллический дисплей.

При этом предварительно в память измерительно-управляющего блока 7 заносятся граничные значения температуры (а можно и давления, в зависимости от требуемых параметров) текучей среды 10 внутри колонны НКТ, при которых следует осуществлять включение – выключение АСН. Если значения температуры, полученные с определенных кварцевых резонаторов (датчиков 9), находятся в пределах или ниже запрограммированных указанных граничных, то измерительно-управляющий блок 7 вырабатывает сигнал на подключение кабельной линии 1 к источнику питания 5. Если значения температуры, полученные с определенных кварцевых резонаторов (датчиков 9), находятся выше граничных, то АСН не подключается к источнику питания 5, а замер температуры будет непрерывно производиться до тех пор, пока значения температуры не войдут в пределы граничных, и только после этого измерительно-управляющий блок 7 вырабатывает сигнал на подключение кабельной линии 1 к источнику питания 5. Указанные граничные значения могут быть также заданы и для параметров давления.

Поступающая при этом информация обрабатывается с помощью микропроцессорного блока вычисления и поступает в измерительно-управляющий блок 7. Далее включается генератор шума, который вырабатывает сигнал с равномерно распределенным спектром в заданном диапазоне частот и в свою очередь возбуждает чувствительные элементы 12 датчиков 9 на частотах, соответствующих текущим значениям температуры и/или давления (в зависимости от назначения датчиков 9). Частоты задаются при помощи перестраиваемого входного резонансного усилителя и микропроцессорного блока вычисления, в котором заложен алгоритм вычисления численного значения частот. Измерение и поддержание параметров производится до тех пор, пока показания не будут соответствовать заданным граничным значениям.

Предлагаемый автоматизированный саморегулирующийся нагреватель имеет следующие преимущества перед известными:

– позволяет измерять температуру текучей среды как внутри НКТ от забоя до устья, так и в затрубном пространстве или одновременно, при наличии датчиков более одного;

– позволяет более точно управлять процессом электропрогрева текучей среды в скважине, т.к. осуществление контроля за параметрами этой среды производится в пристенном, пограничном слое у НКТ, а также в большом интервале (при наличии нескольких датчиков), где наиболее вероятны отложения АСПВ;

– благодаря тому что измерительно-управляющий блок АСН является программируемым, то и сам АСН является саморегулирующимся в зависимости от температуры текучей среды, что обеспечивает минимизацию тепловых потерь и оптимизацию энергосбережения;

– характеризуется большей надежностью вследствие использования резонаторов на тех частотах, на которых на них не воздействует ток высокого напряжения;

– характеризуется простотой монтажа и эксплуатации, т.к., в частности, в основных узлах используются сборные блоки и печатные платы;

– характеризуется высокой точностью измерения температуры и давления за счет применяемых материалов и изделий;

– может быть использован в скважине с любым способом добычи: фонтанной, при оборудовании скважины штанговым или электроцентробежным насосом.

Формула изобретения

1. Автоматизированный саморегулирующийся нагреватель для прогрева текучей среды в скважине, оборудованной насосно-компрессорными трубами (НКТ), характеризующийся тем, что он содержит установленный в скважине снаружи или внутри НКТ нагреватель в виде нагревательного кабеля или в виде кабельной линии, в состав которой входит нагревательный кабель, причем токопроводящие жилы указанного нагревателя с одного конца соединены друг с другом и изолированы, а с другого конца соединены с источником питания, наземный измерительно-управляющий блок и внутрискважинный измерительный блок, состоящий по меньшей мере из одного датчика для считывания термобарических параметров текучей среды и соединенный электропроводящей сигналопередающей линией связи с наземным измерительно-управляющим блоком, при этом указанный датчик установлен таким образом, чтобы его чувствительный элемент касался стенки НКТ, или стенки муфты НКТ, или находился в непосредственной близости от стенки НКТ или стенки муфты НКТ, причем ориентирование чувствительного элемента датчика к наружной или к внутренней стенке НКТ или муфты зависит от потребности измерения термобарических параметров текучей среды внутри НКТ или в затрубном пространстве скважины.

2. Нагреватель по п.1, характеризующийся тем, что в качестве датчиков для считывания термобарических параметров текучей среды используют датчики температуры или датчики давления.

3. Нагреватель по п.1 или 2, характеризующийся тем, что в качестве датчиков для считывания термобарических параметров текучей среды используют кварцевые резонаторы.

4. Нагреватель по п.1, характеризующийся тем, что в качестве наземного измерительно-управляющего блока используют частотный электронный модуль управления.

5. Нагреватель по п.1, характеризующийся тем, что в качестве электропроводящей сигналопередающей линии связи используют нагревательный кабель, или кабельную линию, или одножильный геофизический кабель.

6. Нагреватель по п.5, характеризующийся тем, что в качестве электропроводящей сигналопередающей линии связи используют двухпроводную линию «токопроводящая жила – броня» кабеля.

7. Нагреватель по п.1, характеризующийся тем, что при наличии датчиков более одного наземный измерительно-управляющий блок и электропроводящая сигналопередающая линия связи его с внутрискважинным измерительным блоком выполнены с возможностью одновременного считывания сигналов со всех указанных датчиков.

8. Нагреватель по п.7, характеризующийся тем, что все датчики для считывания термобарических параметров текучей среды соединены с наземным измерительно-управляющим блоком с обеспечением при работе постоянного непрерывного контакта при одном приемо-передающем канале для всех указанных датчиков.

9. Нагреватель по п.1, характеризующийся тем, что наземный измерительно-управляющий блок выполнен в виде программируемого частотного электронного модуля управления, который включает в себя генератор шума, перестраиваемый входной резонансный усилитель, микропроцессорный блок управления нагревательным кабелем, микропроцессорный блок вычисления и жидкокристаллический дисплей.

10. Нагреватель по п.1, характеризующийся тем, что нагреватель выполнен в виде линейного нагревательного кабеля или в виде линейной кабельной линии, в состав которой входит нагревательный кабель.

11. Нагреватель по п.1, характеризующийся тем, что при установке нагревателя снаружи НКТ нагреватель выполнен в виде спирально намотанного на НКТ нагревательного кабеля или в виде спирально намотанной на НКТ кабельной линии, в состав которой входит нагревательный кабель.

РИСУНКИ


PD4A – Изменение наименования обладателя патента СССР или патента Российской Федерации на изобретение

(73) Новое наименование патентообладателя:

Общество с ограниченной ответственностью “Пермский научно-исследовательский и проектный институт нефти” (RU)

Адрес для переписки:

614066, г. Пермь, ул. Советской Армии, 29, ООО “ПермНИПИнефть”

Извещение опубликовано: 27.12.2008 БИ: 36/2008


QB4A – Регистрация лицензионного договора на использование изобретения

Лицензиар(ы): Общество с ограниченной ответственностью “Пермский научно – исследовательский и проектный институт нефти”

Вид лицензии*: НИЛ

Лицензиат(ы): Общество с ограниченной ответственностью “ПермЭнергоПласт”

Договор № РД0045646 зарегистрирован 16.01.2009

Извещение опубликовано: 27.02.2009 БИ: 06/2009

* ИЛ – исключительная лицензия НИЛ – неисключительная лицензия


Categories: BD_2305000-2305999