|
(21), (22) Заявка: 2005131628/14, 12.10.2005
(24) Дата начала отсчета срока действия патента:
12.10.2005
(43) Дата публикации заявки: 20.04.2007
(46) Опубликовано: 10.08.2007
(56) Список документов, цитированных в отчете о поиске:
RU 2190861 С2, 10.10.2002. RU 2003133175 С2, 20.04.2005. RU 2225085 С1, 27.02.2004. RU 2090017 С1, 10.09.1997. US 5488269 А1, 30.01.1996. EP 0831677 A1, 25.03.1998. DE 19637906 A1, 20.03.1997. WO 9943188 A1, 26.08.1999.
Адрес для переписки:
644080, г.Омск, пр-кт Мира, 5, Сибирская государственная автомобильно-дорожная академия, патентно-информационный отдел
|
(72) Автор(ы):
Попов Анатолий Петрович (RU), Горбунков Владимир Иванович (RU)
(73) Патентообладатель(и):
Государственное образовательное учреждение высшего профессионального образования “Сибирская государственная автомобильно-дорожная академия (СибАДИ)” (RU)
|
(54) УСТРОЙСТВО ДОЗИРОВАНИЯ УФ-ИЗЛУЧЕНИЯ ГАЗОРАЗРЯДНЫХ ЛАМП
(57) Реферат:
Изобретение относится к медицинской технике и может быть использовано для точного дозирования ультрафиолетового излучения (УФИ), в частности при применении медицинской технологии АУФОК (аутотрансфузии ультрафиолетом облученной крови), а также в иных медицинских и научно-исследовательских целях, где требуется повторяемость процессов и высокая воспроизводимость результатов. Данное устройство содержит преобразователь напряжения в частоту, блок задания дозы излучения, ключ запуска электронного измерителя, блок управления ключом коммутации. Причем ключ запуска электронного измерителя соединен с управляющим входом блока управления ключом коммутации. При этом в устройство введены газоразрядная лампа УФ-излучения с индуктивным балластом, диодный мост, фотодатчик УФИ, соединенный со входом преобразователя напряжения в частоту, цифровой выход которого соединен с блоком задания дозы излучения, а его цифровой выход подключен к группе анализируемых входов блока управления ключом коммутации. Причем выход блока управления ключом коммутации соединен с входом электронного ключа коммутации, включенного через блок защиты в выходную диагональ моста, шунтирующего газоразрядную лампу. Использование данного изобретения позволит расширить функциональные возможности электронного измерителя электрической энергии. 1 ил.
Изобретение относится к медицинской технике и может быть использовано для точного дозирования ультрафиолетового излучения (УФИ), в частности при применении медицинской технологии АУФОК (аутотрансфузии ультрафиолетом облученной крови), а также в иных медицинских и научно-исследовательских целях, где требуется повторяемость процессов и высокая воспроизводимость результатов.
Изобретение позволяет обеспечивать заранее заданную в цифровой форме величину дозы УФ-излучения в определенной зоне независимо от ряда внешних факторов, таких как изменение рабочей температуры, колебания напряжения в сети, старения арматуры газоразрядных ламп, потери вакуума и прочих факторов, приводящих к изменению интенсивности излучения.
Известны различные варианты построения устройств дозирования УФИ. Устройство, предложенное в [1], позволяет определить данные для максимального оздоровительного эффекта действия УФ-излучения исходя из среднего значения интенсивности биологической эффективности облучения человека.
Имеются другие варианты построения устройств дозирования излучения, которому подвергаются внутренние и внешние ткани биологических объектов при диагностике и терапии. Но все они дают значения доз, имеющих приблизительный, оценочный характер. Так, например, в [2] предлагается аппарат для диагностики и магнитолазерной терапии, построенный на основе лазерной биофотометрии. Но как в [2], так и в [3], где авторы решают задачу повышения точности контроля поглощенной дозы (при низкоинтенсивной лазерной терапии внутренних органов) за счет дополнительного учета энергии, затраченной на локальный нагрев эпидермиса (поверхностного слоя биоткани) и значению величины падающей на биообъект энергии не придается особого внимания. Между тем, от нее напрямую зависят величины вычисляемых поглощенных доз излучения. В одном случае полагаются на известность параметров излучателя, а в другом – на величину падающей средней мощности, хотя известно, что интенсивность падающего излучения значительно подвержена влиянию таких факторов, как старение арматуры, нестабильность напряжения питающей сети, изменение рабочей температуры и прочее.
Ввиду того, что в [2, 3] рассматривается излучение, лежащее в ближнем инфракрасном диапазоне оптического спектра (0.84-0.89 мкм), имеющего отличную от ультрафиолета (0.20-0.40 мкм) квантовую эффективность, а следовательно, и другую картину биологического действия, ни одно из этих устройств не может считаться прототипом предлагаемого устройства дозирования ультрафиолетового излучения.
Наиболее близким к заявленному объекту по технической сущности и достигаемому результату является устройство электронного измерителя электрической энергии, в котором предусмотрена возможность дозирования энергии, расходуемой на проведение определенной технологической операции [4].
Устройство содержит аналоговый преобразователь мощности, преобразователь напряжения в частоту, счетчик импульсов, кроме того, дополнительно введены блок дешифраторов, блок задания дозы, ключ запуска электронного измерителя (электроэнергии), блок управления выключателем и выключатель электроэнергии, установленный в цепи источника питания.
Но в связи со спецификой системы питания источника ультрафиолетового излучения устройство электронного измерителя электрической энергии [4] не позволяет осуществить дозирование УФИ.
Задачей настоящего изобретения является расширение функциональных возможностей электронного измерителя электрической энергии за счет придания ему способностей дозировать подачу заранее заданного в цифровой форме количества энергии ультрафиолетового излучения и повышения точности дозирования УФИ.
Указанный технический результат достигается тем, что в электронный измеритель электрической энергии, содержащий преобразователь напряжения в частоту (импульсный интегратор), который подключен к входу счетчика импульсов, а также блок дешифраторов, блок задания дозы, ключ запуска электронного измерителя, блок управления выключателем, причем ключ запуска электронного измерителя соединен с другим управляющим входом блока управления выключателем, согласно изобретению дополнительно введены газоразрядный источник УФИ с индуктивным балластом, диодный мост, включенный параллельно источнику излучения, фотодатчик УФИ, соединенный со входом преобразователя напряжения в частоту, выход блока управления выключателем соединен с входом ключа коммутации газоразрядной лампы, последовательно с входом блока коммутации в диагональ моста включено балластное сопротивление, а параллельно ему включен блок защиты.
Фотодатчик УФИ представляет собой известную схему [5] включения фотодиода в режиме короткого замыкания, для обеспечения которого между выходом операционного усилителя и инвертирующим входом его включено сопротивление отрицательной обратной связи. При этом выходной сигнал схемы будет равен произведению тока короткого замыкания фотодиода и величины этого сопротивления.
При определенной величине интенсивности светового потока, падающего на фотодиод, ток короткого замыкания будет пропорционален энергетической освещенности (закон Столетова). Таким образом, если произвести интегрирование выходного сигнала операционного усилителя в цифровой форме, то возникает возможность осуществления дозирования энергии ультрафиолетового излучения и, следовательно, самого излучения.
Изобретение поясняется прилагаемым чертежом, где приведена функциональная схема устройства электронного измерителя дозы УФ-излучения газоразрядных ламп.
Устройство дозирования УФ-излучения газоразрядных ламп содержит газоразрядный источник со стартером и индуктивным балластом 1, диодный мост 2, включенный параллельно газоразрядной лампе 3, фотодатчик УФ-излучения 4, соединенный с входом преобразователя напряжения в частоту 5, выход которого подключен к блоку задания дозы излучения 6. Блок задания дозы состоит из счетчика импульсов, блока двоично-десятичных дешифраторов и блока позиционных декадных переключателей, которые подключены к группе анализируемых входов блока управления ключом коммутации 7, ключ запуска электронного измерителя излучения 8 присоединен к управляющему входу блока управления ключом коммутации 7, который имеет непосредственную связь с входом электронного ключа коммутации 9 газоразрядной лампы, который через блок защиты 10 включен в выходную диагональ моста.
Устройство дозирования УФ-излучения газоразрядного источника работает следующим образом.
В исходном состоянии, при подаче соответствующих напряжений питания на схему, ток через газоразрядную лампу со стартером не протекает, так как она зашунтирована электронным ключом коммутации 9 газоразрядной лампы, включенным в выходную диагональ диодного моста 2.
Перед подачей дозированного ультрафиолетового излучения, которое требуется для проведения предстоящей процедуры, предварительно устанавливается величина дозы с помощью позиционных декадных переключателей блока задания дозы излучения 6, имеющих десять фиксированных положений с соответствующими обозначениями цифр на лимбах. Количество переключателей равно, например, четырем десятичным разрядам цифр, соответствующим определенному значению задаваемой дозы, в заранее обусловленных для конкретной процедуры единицах.
В момент замыкания на короткое время кнопочного ключа запуска электронного измерителя излучения 8, в блоке управления ключом коммутации 7 формируется сигнал на включение лампы, который воздействует на электронный ключ коммутации 9. Составной транзистор электронного ключа запирается, и шунтирующее действие диодного моста прекращается. За счет переходных процессов в цепи, состоящей из накопителя энергии магнитного поля (он же – индуктивный балласт), в момент разрыва цепи при срабатывании стартера возникает импульс напряжения, обеспечивающий зажигание лампы.
Электрический сигнал, пропорциональный величине падающего на фотодиод светового потока УФИ с фотодатчика 4, находящегося в зоне облучаемого газоразрядной лампой 3 объекта, поступает на вход блока преобразования напряжения в частоту 5.
Блок 5, реализующий процедуру импульсного интегрирования текущего значения мощности потока, падающего на фотодиод фотодатчика УФИ в течение определенного периода времени, определяемого заданной в цифровой форме дозы излучения (путем квантования по вольт-секундной площади выходного сигнала фотодатчика), преобразует результат текущего интегрирования в последовательность импульсов, поступающих в блок 6.
Счетчик импульсов, входящий в блок задания дозы 6, подсчитывает количество импульсов и выдает информацию на вход блока двоично-десятичных дешифраторов, соединенных с блоком позиционных декадных переключателей блока задания дозы. После обнуления счетчика в блоке 6, в котором в виде двоичного числа содержится текущее значение дозы излучения, блок 6 вырабатывает сигнал, поступающий на второй вход блока 7, что приводит к появлению исходного низкого уровня сигнала на выходе блока 7 и закрыванию ключа 9. Это, в свою очередь, приводит к гашению разряда лампы (или окончанию дозирования УФИ).
Для предохранения электронного ключа коммутации 9 от электрического пробоя импульсами напряжения, возникающими между электродами лампы в моменты ее зажигания, предназначен специальный блок защиты 10.
Способность дозирования ультрафиолетового излучения, приданная описанному в прототипе электронному измерителю электрической энергии с целью расширения функциональных возможностей, заключается в использовании специальной электронной схемы в сочетании с известным устройством дозирования, что позволяет осуществить дозирование УФИ.
Предлагаемое устройство учитывает колебания мгновенных значений мощности светового потока, вызванными нестабильностью сети питания, процессами зажигания и гашения газоразрядных ламп, старением ламп, а также влиянием внешней среды.
Источники информации
1. Патент РФ №2150973, МПК 7 A61N 5/06, G01J 1/04, 1/42, 1/58 от 20.05.1998 г., опубл. 20.06.2000 г.
2. Патент РФ №2214844, МПК 7 A61N 5/067 от 27.02.2003 г., опубл. 27.10.2003 г.
3. Патент РФ №2228209, МПК 7 A61N 5/067 от 06.06.2002 г., опубл. 10.05.2004 г.
4. Патент РФ №2190861, МПК 7 G01R 21/06 от 16.03.2000 г., опубл. 10.10.2002 г.
5. Бузанова Л.К., Глиберман А.Я. Полупроводниковые фотоприемники, М.: Энергия, 1975 г., 65 с.
Формула изобретения
Устройство дозирования УФ-излучения газоразрядных ламп, содержащее преобразователь напряжения в частоту, блок задания дозы излучения, ключ запуска электронного измерителя, блок управления ключом коммутации, причем ключ запуска электронного измерителя соединен с управляющим входом блока управления ключом коммутации, отличающееся тем, что в него введены газоразрядная лампа УФ-излучения с индуктивным балластом, диодный мост, фотодатчик УФИ, соединенный со входом преобразователя напряжения в частоту, цифровой выход которого соединен с блоком задания дозы излучения, а его цифровой выход подключен к группе анализируемых входов блока управления ключом коммутации, причем выход блока управления ключом коммутации соединен со входом электронного ключа коммутации, включенного через блок защиты в выходную диагональ моста, шунтирующего газоразрядную лампу.
РИСУНКИ
|
|