Патент на изобретение №2303708

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2303708 (13) C2
(51) МПК

F03B13/14 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 29.11.2010 – действует

(21), (22) Заявка: 2005130082/06, 29.09.2005

(24) Дата начала отсчета срока действия патента:

29.09.2005

(43) Дата публикации заявки: 10.04.2007

(46) Опубликовано: 27.07.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2259302 С2, 27.08.2005. SU 1783140 А1, 23.12.1992. SU 91753 А1, 20.01.1962. US 4447740 А, 08.05.1984. US 4462211 А, 31.07.1984. US 3912938 А, 14.10.1975. GB 1447758 А, 02.09.1976. GB 20028929 А, 12.03.1980.

Адрес для переписки:

119296, Москва, ул. Вавилова, 56, стр.1, кв.46, Ю.Е.Устюгину

(72) Автор(ы):

Устюгин Юрий Евгеньевич (RU),
Устюгина Галина Павловна (RU)

(73) Патентообладатель(и):

Устюгин Юрий Евгеньевич (RU),
Устюгина Галина Павловна (RU)

(54) СПОСОБ И УСТРОЙСТВО ВОЛНОВАЯ ТУРБИНА “УСТЮГ”

(57) Реферат:

Способ и устройство турбина “Устюг” предназначены для преобразования энергии морских волн в механическую энергию вращения турбины. Турбина (Т) размещается в глубоких спокойных слоях воды, а поплавок (П), удерживающий вал вращения Т, но не участвующий в его вращении, находится на поверхности воды, участвуя в ее волновом движении. Посредством жесткой продольной связи с Т через вал вращения смещения П передаются затопленной Т, что приводит ее во вращательное движение. В силу гибкости лопастей (Л) движение Т всегда осуществляется в одну сторону, причем в состоянии покоя хорды Л располагаются в плоскости вращения Т, а в активном состоянии Л изгибаются, как крыло птицы или хвост рыбы при маховом поперечном к направлению движения ударе. Захват Л и силовое воздействие от П к Л осуществляется в соответствии с правилом U=0.29 в поперечном к плоскости движения Л направлении. Л расположены попарно симметрично относительно вала вращения на поперечине так, что образуют отдельный элемент Т с знакоодинаковыми для обеих Л порождаемых ими моментов вращения. Количество n таких элементов, расположенных вдоль вала вращения Т, определяет мощность Т, возрастающую пропорционально числу элементов Т, взаимное расположение которых по углу в плоскости вращения и расстоянию между элементами на валу вращения определяется из условия максимальной эффективности работы элементов. Предлагаемое изобретение позволяет повысить эффективность преобразования энергии волн и надежность работы. 2 н.п. ф-лы, 1 табл., 12 ил.

Изобретение относится к средствам преобразования возвратно-поступательного движения текучих сред, вызванного, например, морскими волнами, в одностороннее вращательное движение турбины.

Уровень техники

Известно устройство ветряная мельница или ветряк (Б.Экк. Введение в техническую гидромеханику. М. – Л.: 1941, Госэнергоиздат, – 256 с.). В ней на валу вращения в плоскости, перпендикулярной к оси вала вращения, закреплено несколько лопастей, которые под действием ветра приходят в движение, задавая при этом вращательное движение вала вращения.

К недостаткам известного устройства относятся:

– низкий коэффициент полезного действия (КПД): предельный теоретический КПД меньше 60%, реальный – в пределах 15-25%;

– однонаправленность ветряка по отношению к направлению ветра, задающая необходимое направление вращения вала.

К недостаткам известного устройства относятся:

– потеря эффективности устройства из-за энергетических потерь, сопровождающих процесс прохождения текучими потоками системы клапанов и колен, изменяющих направления потоков;

– сохраняется неэффективный принцип работы ветряка;

Известна турбина Уэллса (Твайделл Дж., Уэйр А. Возобновляемые источники энергии: Пер. с англ. – М.: Энергоатомиздат. 1990. – 392 с.), у которой знакопостоянный вращательный момент возникает независимо от прямого или обратного направления потока текучей среды. Это достигается за счет формы лопастей турбины, обладающих аэродинамическим профилем в виде капли, вытянутой в направлении движения лопасти в плоскости вращения турбины. При падении потока на лопасть под углом к ее поверхности, отличающимся от прямого угла, возникает составляющая силы, воздействующей на лопасть, выталкивающая ее из потока в направлении, перпендикулярном оси вращения турбины. В результате турбина приобретает вращательное движение, поддерживаемое совокупным воздействием всех лопастей, имеющихся у турбины. В силу симметрии профиля лопасти по отношению к плоскости вращения турбины воздействие прямого потока аналогично воздействию обратного потока, в результате чего турбина в обоих случаях имеет одно и то же направление вращения.

К недостаткам турбины Уэллса относятся:

– низкий коэффициент полезного действия (КПД). В связи с тем, что турбина Уэллса – это фактически ветряк, хоть и двухсторонний, его (КПД) в идеальном варианте может оцениваться как меньше 60%, а в реальном от 15 до 25%;

– избирательность в эффективности взаимодействия лопасти и потока из-за фиксированности профиля лопасти, что при нестабильности волнового спектра приводит, как следствие, к существенной потере общей эффективности турбины;

– из-за фиксированности профиля лопасти исключен ресурс возможного повышения эффективности работы турбины за счет снижения сопротивления;

– фиксированность аэродинамического профиля лопасти и механистический подход к возникновению движущей силы лопасти за счет отражения потока от наклонной плоскости представляют собой суррогат двух разделов физики – динамики твердого тела и аэродинамики обтекаемого профиля, что приводит к низкоэффективному варианту турбины;

– принцип работы турбины задает такую геометрию проходящих через нее потоков, что приводит к необходимости дополнительных затрат на строительство сооружений, задающих рабочие потоки и снижающих эффективность всего сооружения;

– геометрия расположения рабочих потоков и турбины исключает наращивание мощности на валу турбины путем каскадного расположения на нем группы последовательно расположенных турбин;

– турбулентность внешней атмосферы в штормовой период существенно влияет на эффективность работы турбины Уэллса.

К недостаткам известного средства относятся:

– тот же низкоэффективный принцип действия ветряка, т.е., по сути, гребковый способ создания силы тяги лопастями;

– жесткие лопасти снижают эффективность работы устройства;

– введение в устройство системы управления лопастями, усложняющей устройство, неизбежно приводит к снижению надежности работы турбины.

Наиболее близким к предлагаемому техническому решению является наш «Способ и устройство для перемещения затопленного тела» (патент №2259302 RU), в котором к плоскому или объемному гидродинамически обтекаемому гибкому упругому телу, находящемуся в текучей среде, в поперечном к поверхности профиля направлении в определенной области, удовлетворяющей правилу U=0.29, прикладывается сила. Это приводит к возникновению у тела силы тяги в направлении вперед, поперечном к направлению прикладываемой силы.

Известное решение допускает расширение в виде применимости его для случая, когда сила, воздействующая на вышеуказанное тело, создается за счет энергии, например, морских волн.

Цель предлагаемого решения – разработка способа и устройства-турбины, вращательное движение которой возникает под воздействием текучей среды при возвратно-поступательном движении турбины относительно среды или среды относительно турбины вдоль оси ее вращения, лишенного вышеперечисленных недостатков известных технических решений и являющегося естественным развитием нашего известного технического решения.

Цель достигается применением в качестве лопасти турбины плоского или объемного гидродинамически обтекаемого гибкого упругого тела, область жесткого захвата которого удовлетворяет правилу U=0.29, причем в состоянии покоя хорда лопасти располагается в плоскости вращения турбины, перпендикулярной оси вращения турбины, а сама турбина состоит из n отдельных элементов, закрепленных на валу вращения турбины, каждый из которых составлен из двух и более лопастей, симметрично расположенных относительно вала вращения турбины, при этом сила тяги лопасти возникает под воздействием текучей среды при возвратно-поступательном движении турбины относительно среды или среды относительно турбины вдоль оси ее вращения за счет гибких деформаций лопасти, подобных деформациям крыла птицы или хвоста рыбы в процессе махового движения, и возникновения вихревого движения среды в поперечном относительно направления махового движения направлении.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ.

А. При разработке «Способа и устройства для перемещения затопленного тела» (патент №2259302 RU) нами получено, что при воздействии в поперечном направлении на плоское или объемное гидродинамически обтекаемое гибкое упругое тело типа крыла, находящееся в текучей среде, в определенной его области приводит к возникновению силы тяги, вынуждающей тело двигаться вперед в поперечном к воздействующей силе направлении.

Поясним это.

Прежде всего, особого внимания требует вопрос определения области приложения внешнего усилия к движителю.

Рассмотрим (фиг.1) тело, находящееся под действием внешней силы. Для определенности пусть это будет плоская пластина прямоугольной формы с размерами l×k, где l – поперечный, a k – продольный ее размеры, причем lо. Ось ОХ направим по вертикали вниз так, что прямая, соединяющая точку О с пластиной, будет совпадать с осью ОХ. Ось OY направим в сторону возникающего поступательного движения пластины так, что траектория движения, как плоская кривая, будет расположена в плоскости XOY. Точкой С обозначим геометрический центр отрезка АВ, являющийся в нашем случае одновременно центром масс этого отрезка. Точкой О’ обозначим точку захвата тягой (тросом) пластины на отрезке АВ.

Существует две крайние ситуации: первая – это когда тяга захватывает пластину в точке, соответствующей максимальному миделевому сечению, т.е. в точке С, где смещение СО’= точки захвата пластины тягой равно =0. В этом случае прикладываемая к пластине внешняя сила будет порождать максимальную противоположно направленную силу реакции среды. Это приводит к максимальным потерям в связи с совершением работы, затрачиваемой на преодоление силы реакции среды, и сила тяги не возникает. Эффективность выполнения работ в таком случае низкая. Вторая ситуация – это когда тяга захватывает пластину в точке, расположенной в середине фронтовой линии пластины. На плоскости XOY это положение соответствует точке А отрезка АВ, где =l/2. В этом случае сила натяжения тяги, внешняя сила, минимальна. При выводе пластины из горизонтального положения осуществляется, прежде всего, поворот пластины до положения, близкого к вертикальному. Сила тяги не возникает. Т.е. эффективность приложения силы и в этом случае низкая. Следует ожидать, что между двумя крайними случаями, когда =0 и =l/2, должна существовать точка, захват пластины в которой будет способствовать максимальной эффективности за счет возникновения силы тяги как результата действия двух неизбежно существующих начальных сил – внешней силы и силы реакции среды.

Эффективность действия внешней силы будем оценивать по максимуму возникающей силы тяги в зависимости от параметра . Физически это должно выглядеть так, что при приложении внешнего усилия к движителю возникает сила реакции среды. Векторы этих сил складываются и дают вектор результирующей силы, приводящий к поступательному движению пластины по криволинейной траектории.

Оценим то расстояние , на котором должна располагаться точка захвата внешней тягой пластины по отношению к геометрическому центру этой пластины.

На фиг.2, а приведены:

XOY – исходная прямоугольная система координат, точка О – точка выбора тяги, например, троса;

X”О”Y” – система координат, связанная с мгновенной осью вращения, проходящей через начало координат О”. Пусть положение тела в пространстве будет характеризоваться какой-либо точкой этого тела, например, как в нашем случае, точкой его захвата. Тогда введение системы координат X”О”Y” связано с тем, что при криволинейном движении тела имеется ось, которая в рассматриваемый момент движения находится в покое, т.е. тело в этот момент как бы совершает вращательное движение вокруг этой оси, проходящей через точку О”. Такая ось может, как в нашем случае, находиться за пределами тела. А результирующая криволинейная траектория движения тела будет представлять собой множество точек, последовательно образованных совокупностью положений в пространстве точки захвата.

– мгновенная длина троса;

– расстояние от точки захвата пластины до мгновенной оси вращения О”;

F – вектор прикладываемой тяговой силы троса (здесь и далее жирными буквами будут обозначаться векторные величины);

N – вектор силы реакции среды.

На фиг.2, б приведены:

АВ=l – ширина пластины;

l1 – плечо силы f1;

f1 – вектор силы, задающей вращение пластины вокруг точки О’, связанной с захватом пластины тросом;

С – центр масс пластины и одновременно ее геометрический центр;

O’С= – расстояние смещения точки захвата пластины от центра масс С;

Fn=F·Cos-N’ – результирующая нормальная составляющая силы, действующей на пластину со стороны троса;

F – тангенциальная составляющая силы действующей на пластину со стороны троса;

F’=Fn+F – та результирующая сила, которая вынуждает тело двигаться поступательно по криволинейной траектории, отличающейся от окружности;

– угол между мгновенным направлением движения пластины и осью Y;

– мгновенное значение угла поворота мгновенного радиуса ‘ по отношению к оси O”X”;

– угол отклонения троса от вертикальной оси X;

– угол между тросом и мгновенным радиус-вектором ‘.

Момент M1 (нежирными буквами в дальнейшем обозначаются модули соответствующих векторов) силы F, прикладываемой к пластине и имеющей плечо ‘, определяется произведением силы на плечо. Тот же момент силы определяется моментом инерции JO” системы и приобретенным угловым ускорением d2/dt2. Тогда имеет место равенство

(Н.И.Карякин, К.Н.Быстров, П.С.Киреев. Краткий справочник по физике. “Высшая школа”. М., 1962).

Другой момент М2 силы f1, действующей на пластину с плечом l1, причем в этом случае момент инерции – JO’ и угловое ускорение – d2/dt2, определяется равенством

Рассмотрим случай равенства углов = и соответствующих угловых ускорений d2/dt2=d2/dt2.

Случай < соответствует тому, что d2/dt22/dt2, т.е. в соответствии с геометрией фиг.2а, б пластина под действием троса будет разворачиваться по часовой стрелке. При этом пластина будет приобретать поступательное движение назад. Случай > соответствует тому, что d2/dt2>d2/dt2, т.е. пластина под действием троса будет разворачиваться против часовой стрелки. Но при этом согласно геометрии фиг.2а, б будет уменьшаться сила реакции среды N. В результате сила F становится просто силой, тянущей за собой тело, но не той силой, которая действует в поперечном к поступательному направлению движению затопленного тела.

Тогда имеет место равенство

Поскольку

(m – эффективная равномерно распределенная масса пластины, включающая присоединенную массу [Л.Д.Ландау, Е.М.Лифшиц. Гидродинамика. “Наука”. 1988]),

то из равенства (3) с учетом (4), (5) и (6) вытекает

Обозначив всю совокупность сомножителей, не зависящих от , буквой К, равной

перепишем равенство (7) в виде

Тогда первая производная F‘ функции F по может быть записана в виде

Равенство нулю первой производной F‘=0 определяет то значение величины , при котором функция F‘ имеет экстремум (И.Н.Бронштейн, К.А.Семендяев. Справочник по математике. “Наука”. 1964). Опуская очевидные промежуточные выражения и преобразования, запишем,

А поскольку вторая производная F” меньше нуля

то полученное значение величины определяет максимум функции F от .

Если же учесть, что сила тяги F=F·Sin, то оказывается, что при

затопленное тело приобретает максимальное тангенциальное ускорение при заданной прикладываемой силе F и растет с ростом угла пропорционально Sin.

Этот же угол задает угол между вектором силы N реакции среды, воздействующей на пластину, и прямой, вдоль которой действует прикладываемая к пластине сила F.

Отсюда следует, что упругость и гибкость пластины должны в процессе работы задавать такое значение угла для хорды, которое соответствует условию возникновения максимальной силы тяги.

Таким образом, оказывается, что размещение точки захвата пластины в соответствии с условием =0,2887·l или правилом U=/l=0.29 позволяет достичь оптимальных условий перемещения пластины под действием результирующей двух сил – тяговой силы троса и силы реакции среды. В этом случае поступательное движение тела энергетически оптимально уже хотя бы потому, что движение пластины осуществляется в соответствии с теми условиями, которые приводят к минимуму энергетические потери движущегося тела. Т.е., имея в своем распоряжении оборудование, позволяющее развить тяговую силу F, следует определять точку захвата пластины на основании полученного условия. Тогда возникающая скорость перемещения пластины будет максимальной, а соответствующие энергетические затраты на преодоление сил сопротивления среды – минимальными.

Необходимо обратить внимание на то, что точка, характеризующаяся условием =0,2887·l, оказывается близкой к области так называемого фокуса профиля крыла, определяющегося из других соображений. Это понятие используется в самолетостроении (A.M.Мхитарян. Аэродинамика. М.: Машиностроение. 1976. 448 с.) при выборе оптимальной формы крыла в целях, в частности, определения такого профиля крыла, при котором крыло будет иметь максимальную подъемную силу при наилучшем его качестве. При этом крыло самолета жесткое, а не гибкое, что влияет на эффективность крыла, лишая его универсальности.

В ходе экспериментов мы выявили, что гибкое упругое тело, захваченное в соответствии с правилом U=0.29 и находящееся под воздействием внешнего поперечного усилия, имеет наилучшие динамические показатели – максимальную силу тяги и минимальную потерю энергии при заданной величине воздействующей силы.

Б. В наших исследованиях (Устюгина Г.П. “Полеты в воздушной и водной средах”. Газета “Физика”, №29, Изд. Дом “Первое сентября”. 2004) показано, что для маховых перьев птиц от воробья, синицы, городских вороны и голубя до чайки сокола и аиста характерным является равенство параметра U=0.29. Определялось оно измерениями взаимного расположения опахала и ствола пера. Причем ствол – это та часть пера, через которую осуществляется ударное маховое взаимодействие крыла с воздушной средой. Т.е. природные движители подтверждают справедливость правила U=0.29 как наилучшего для создания максимальной силы тяги у гибкого упругого аэродинамически обтекаемого плоского или близкого к тому объемного тела при воздействии на него поперечной силы с минимальной потерей энергии.

В. Дальнейшие наши исследования заключались в том, чтобы применить результат пункта А (правило U=0.29) в варианте не одностороннего, а знакопеременного воздействия на тело с целью создания силы тяги вынуждающей тело двигаться не по криволинейной траектории с монотонным изменением направления движения, а в среднем поступательно в одном прямом направлении движения.

Пусть (фиг.3) пластина будет закреплена тягой в виде не троса, а подвижного вдоль оси ОХ штока, через который осуществляется воздействие на пластину. Пусть также шток будет лишен возможности вращения в точке О системы координат XOY. А сама точка О пусть будет жестко связана, например, с плавсредством. Тогда (фиг.3), если реализуем внешнее воздействие в виде знакопеременной периодической силой, принуждающей точку захвата пластины к возвратно-поступательному движению, то следует ожидать возникновения результирующей силы тяги вперед. Эта сила тяги, приложенная к плавательному аппарату, приведет к его поступательному движению. При этом совершаемые вынужденные колебания точки захвата пластины будут являться движениями, поперечными по отношению к направлению движения плавсредства, что идеально соответствует машущему движению крыла птицы и хвоста рыбы. Одновременно это означает, что все средства возбуждения силы тяги в текучих средах, ориентированные на колебательное вееропобное движение движителя принципиально противоречат условию максимальной эффективности =0,2887·l и, следовательно, по определению имеют меньший коэффициент полезного действия, чем в предлагаемом случае.

В таком случае не возникает необходимость задавать угол атаки движителя, поскольку движитель под воздействием внешних сил и условий сам, деформируясь, принимает энергетически выгодные форму и угол атаки.

При работе движителя возникает вихревой поток (фиг.4), формирующийся последовательно сходящими с движителя замкнутыми вихрями типа тора. При этом направление вихревого потока (фиг.5) прямо противоположно направлению силы тяги. Поток формируется группой вихрей, образующих за движителем дорожку типа дорожки Кармана (Н.Е.Кочин, Н.В.Розе. Введение в теоретическую гидромеханику. Гос. технико-теоретическое издательство. М.-Л. 1932 г. 316 стр.). Здесь уместна аналогия с картиной возникновения подъемной силы крыла, движущегося в текучей среде с некоторой скоростью: при небольших углах атаки, примерно 5-10 градусов, у крыла возникает значительная подъемная сила. В нашем случае, прикладывая к пластине внешнюю силу так, что она играет роль подъемной силы, а деформации изгиба пластины приводят ее форму к форме крыла, мы создаем для внешней текучей среды условия, при которых возникающее вихревое движение среды должно быть таким, чтобы оно соответствовало подъемной силе. В этом смысле наш способ возбуждения движения среды является обратным способу возникновения подъемной силы крыла, находящегося в движущемся потоке. В этом случае исключено применение текучей среды в качестве упора, а потому исключен элемент движения “провал” движителя в среду, когда он, как гребковое средство, используется для того, чтобы опереться о текучую среду.

Проблема неэффективной стадии “перекладывания движителя” в предлагаемом решении снимается полностью тем, что движитель в этой стадии распрямляется и возвращает потенциальную энергию изгиба в виде кинетической энергии поступательного движения плавательного аппарата вперед.

В результате наших исследований движителя с помощью метода физического моделирования получено КПД76%. В аналогичных условиях винт-движитель обладает КПД45%.

Г. Применение нашего движителя в варианте лопасти для турбины дает устройство, изначально обладающее высоким КПД и знакопостоянным моментом вращения при знакопеременном направлении падения потока текучей среды на турбину.

На фиг.6 показан элемент турбины, состоящий из двух лопастей 1, закрепленных на поперечине 2 в области, соответствующей правилу U=0.29 для лопасти. Поперечина 2 жестко соединена с валом 3, имеющим ось вращения 4. Так выглядит элемент турбины в состоянии покоя. Движение элемента вдоль оси вращения, т.е. в положительном направлении оси Z приводит к изгибным деформациям 5 лопастей, противоположное движение приводит к изгибным деформациям 6 лопастей. В обоих случаях элемент приобретает вращательное движение в направлении 7 – против часовой стрелки. Наращивание числа элементов турбины, последовательно расположенных на одном валу вращения, приводит к пропорциональному возрастанию мощности на валу вращения. Это позволяет наращивать необходимую мощность на одном валу вращения турбины без увеличения поперечных размеров колеса турбины.

Изобретение поясняется иллюстрациями, на которых:

Фиг.1. Вид сбоку (сечение) АВ пластины. XOY – декартова система координат; начальная точка О совпадает с точкой отбора троса OO’; О’ – точка захвата пластины тросом. С – геометрический центр пластины. S – траектория и направление движения пластины. F – вектор внешней силы, прикладываемой через трос к пластине.

Фиг.2.а – вид сбоку (сечение) пластины АВ в движении; XOY – исходная система координат; X”O”Y” – мгновенная система координат; F – вектор внешней силы, N – вектор силы реакции среды; б – вид сбоку пластины АВ в начальном положении.

Фиг.3. В системе координат XOY изображены две стадии движения гибкой пластины 1 (АВ) под действием внешней силы удара Fудар, прикладываемой к пластине через шток в точке 2: а) – сила удара направлена вверх; б – сила удара направлена вниз. Ось OY соответствует направлению движения пластины. Ось ОХ соответствует вертикальной прямой, вдоль которой шток осуществляет свое собственное возвратно-поступательное движение и движение точки захвата пластины. Векторами N показаны силы реакции среды. OO’ – линия горизонта; mm’ – хорда изогнутой пластины.

Угол между отрезками прямых mm’ и OO’ соответствует углу атаки, порожденному деформацией пластины и силами удара и реакции среды. Отдельно вынесены параллелограммы сил Fудар и N, с помощью которых геометрически определяется вектор силы тяги R.

Фиг.4. Схематично показано образование цепочки вихрей, образующейся за действующей пластиной, движущейся в среде со скоростью V. Цифрами 1, 2, 3 отмечены последовательные во времени и пространстве положения пластины при прохождении срединной линии поступательного движения движителя вперед. Замкнутые и незамкнутые кривые со стрелкой указывают направления движения частиц среды. Замкнутые кривые отражают отдельные вихри положительной и отрицательной интенсивности.

Фиг.5. Приведена фотография вихревого следа за кормой действующей модели. След отразился в виде расширяющейся слева направо полосы возмущений на поверхности воды. Модель движется справа налево.

Фиг.6. Диметрическая проекция вращательного элемента турбины. Лопасти 1 закреплены на поперечине 2 в области, соответствующей правилу U=0.29 для лопасти. Поперечина 2 жестко соединена с валом 3, имеющим ось вращения 4. Так выглядит элемент турбины в состоянии покоя. Движение элемента вдоль оси вращения, т.е. в положительном направлении оси Z, приводит к изгибным деформациям лопастей вида 5, противоположное движение приводит к изгибным деформациям лопастей вида 6. В обоих случаях элемент приобретает вращательное движение в направлении 7 – против часовой стрелки.

Фиг.7. Фотография модели турбины с одним вращательным элементом, содержащая две симметрично расположенные прямоугольные лопасти 1, закрепленные на поперечине 2, жестко связанной с валом 3. На вал 3 насажены поплавок 8 с возможностью свободного вращения на валу и жестко большая шестерня 9.

Фиг.8. Показаны проекции лопасти 1: а – вид сбоку, b – вид сверху. 10 – карман для жесткого крепления поперечины и лопасти.

Фиг.9. Фотография турбины с тремя последовательно расположенными элементами на валу 3, смещенными один по отношению к другому на угол 120° и расстояние 0.1 м.

Фиг.10. Фотография генератора 12, закрепленного на платформе 11, 13 – выводы проводов генератора.

Фиг.11. Цветная фотография работы устройства: под действием вертикальных движений руки устройство, захваченное за поплавок, с турбиной, погруженной в воду, зажигает красный светодиод 14. Светодиод подсоединен к выводам генератора 13 и для удобства фотосъемки механически закреплен на штативе 15.

Фиг.12. Черно-белый вариант фотографии фиг.11.

Для демонстрации реализации предлагаемого технического решения воспользуемся методом физического моделирования.

На фотографии фиг.7 приведена фотография модели турбины с одним вращательным элементом, содержащая две симметрично расположенные прямоугольные лопасти 1, закрепленные на поперечине 2, жестко связанной с валом 3. На вал 3 насажены поплавок 8 с возможностью свободного вращения и жестко большая шестерня 9. Лопасти выполнены из гибкой упругой полимерной пленки толщиной 0.00025 м так, что образуют прямоугольное тело с размерами 0.07×0.105 м2. В области, соответствующей правилу U=0.29, создан карман 10 для насаживания и крепления лопасти 1 на поперечине 2. На фиг.8 показаны проекции лопасти 1: а – вид сбоку, b – вид сверху. 10 – карман для жесткого крепления поперечины и лопасти.

На фотографии фиг.9 приведена турбина с тремя последовательно расположенными элементами на валу, смещенными один по отношению к другому в плоскости вращения на угол 120° и расстояние 0.1 м вдоль вала вращения. 11 – площадка для крепления генератора 12 так, как это показано на фотографии фиг.10. Вращение вала 3 приводит в движение шестерню 9, которая, в свою очередь, через зубчатую передачу приводит во вращение малую шестерню, насаженную на вал генератора 12. Коэффициент передачи шестеренок 132:8. В результате вращения турбины на выводах генератора 13 возникает разность потенциалов. В качестве генератора используется электрический микродвигатель постоянного тока в обратном режиме. Двигатель постоянного тока ДПМ-25-Н1-03 рассчитан на напряжение питания 12 В и силу тока 0.3 А; угловая скорость – 6000 об/мин. В качестве индикатора используется светодиод марки GNL-1206URC красного цвета с рабочими напряжением 1.9 В и силой тока 70 мА, подключаемый к выводам генератора. Для имитации движения поплавка на волне используется ручной вариант: удерживая устройство за поплавок, производим вертикальные колебательные движения устройства так, что трехэлементная турбина все время находится в погруженном в воду состоянии. При этом возникает вращательное движение турбины, не зависящее от прямого или обратного направления движения устройства, возбуждающее в цепи генератор-светодиод электрический ток. На фотографиях фиг.11 в цветном и фиг.12 в черно-белом вариантах можно видеть работу устройства: под действием вертикальных движений руки устройство, захваченное за поплавок, с турбиной, погруженной в воду, зажигает красный светодиод 14. Светодиод подсоединен к выводам генератора 13 и для удобства фотосъемки механически закреплен на штативе 15. Динамометрические измерения и измерения напряжения и силы электрического тока дали следующие результаты (таблица 1). Максимальное значение прикладываемой силы выбрали равным 3.0 Н. Средняя прикладываемая сила 3.0×0.5 действовала в течение 0.5 с на интервале вертикального смещения устройства, равном 0.06 м, что определило среднюю скорость движения как 0.12 м/с и угловую 1.0 обор/с. Мощность, прикладываемая к устройству, равна 3.0×0.5×0.12=0.18 Вт. Измерение напряжения (2.0 В) и силы тока (0.5 А) на светодиоде, подключенном к выводам генератора, дало оценку выходной (полезной) мощности 2.0×0.5=0.1 Вт.

Таблица 1.
Сила, Н Скорость, М/с Мощность, Вт Напряжение, В Сила тока, А Мощность, Вт
3.0×0.5 0.12 0.18 2.0 0.05 0,10

В результате КПД устройства оказалось равным 0.1/0.18=0.56=56%.

Если учесть, что КПД генератора (обратного двигателя) может оцениваться в пределах от 60 до 80%, то для КПД турбины можно получить оценки – от 93 до 70%.

Таким образом, предложенное техническое решение оказывается экономически существенно более выгодным, чем известные решения. Причина выигрыша заключается в том, что мы принципиально отходим от варианта использования текучей среды в качестве опоры для движителя, поскольку в этом случае движитель всегда будет “проваливаться” в среду, при этом его действенность будет заключаться в том, сколько текучей массы в единицу времени он успеет оттолкнуть от себя. Но это уже ближе к реактивному движению, причем в самом экономически невыгодном варианте. Наш же вариант заключается в том, что движитель создает условия для возникновения вихревых потоков, т.е. таких потоков, которые возникают при маховых движениях крыла у птицы или хвоста у рыбы, КПД которых примерно 95%.

Предлагаемое техническое решение естественным образом допускает следующие расширения:

– турбина может располагаться не только в водной, но и в воздушной среде;

– на одном валу вращения возможно совместное применение и подводного и воздушного вариантов турбины.

Формула изобретения

1. Способ преобразования энергии морских волн в механическую энергию вращения турбины, заключающийся в том, что используется различие в состоянии поверхностных слоев моря, участвующих в волновом движении, и спокойных глубоких слоев воды, отличающийся тем, что турбина размещается в глубоких спокойных слоях воды, а поплавок, удерживающий вал вращения турбины, но не участвующий в его вращении, находясь на поверхности воды, участвует в ее волновом движении и передает посредством жесткой продольной связи с турбиной валом вращения свои смещения затопленной турбине, что приводит к ее смещениям относительно спокойных глубинных слоев воды, в результате которых турбина приходит во вращательное движение, при этом в силу гибкости лопастей турбины движение всегда осуществляется в одну сторону, причем в состоянии покоя хорды лопастей турбины располагаются в плоскости вращения турбины, а в активном состоянии лопасти изгибаются, как крыло птицы или хвост рыбы при маховом поперечном к направлению движения ударе, при этом захват лопасти и силовое воздействие от поплавка к лопасти осуществляется в соответствии с правилом U=0,29 в поперечном к плоскости движения лопастей направлении.

2. Турбина, содержащая лопасти, закрепленные на валу вращения, отличающаяся тем, что каждая лопасть представляет собой гибкое упругое плоское или близкое к плоскому объемное гидродинамически обтекаемое тело прямоугольной или близкой к маховому перу птицы формы, удерживаемое поперечиной, жестко связанной с валом вращения, и подвергающееся через поперечину силовому воздействию в области, определяемой правилом U=0,29 с возможностью осуществлять маховые движения под действием продольных движений вала вращения, причем лопасти попарно симметрично относительно вала вращения расположены на поперечине так, что образуют отдельный элемент турбины с знакоодинаковыми для обеих лопастей порождаемых ими моментов вращения, а количество n таких элементов, расположенных вдоль вала вращения турбины, определяет мощность турбины, возрастающую пропорционально числу элементов турбины, взаимное расположение которых по углу в плоскости вращения и расстоянию между элементами на валу вращения определяется из условия максимальной эффективности работы элементов.

РИСУНКИ

Categories: BD_2303000-2303999