Патент на изобретение №2303046
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ КРАСНОГО ЖЕЛЕЗООКИСНОГО ПИГМЕНТА
(57) Реферат:
Изобретение относится к технологии пигментов и может быть использовано в лакокрасочной, полиграфической промышленности, в производстве резины, пластических масс. Способ получения красного железоокисного пигмента включает окисление водных растворов сульфата или суспензий гидроксида железа (II) кислородом воздуха при квазистационарных значениях температуры и рН реакционной среды, гидротермальную термообработку суспензии из оксигидроксидов железа (III) в периодическом или непрерывном режиме в автоклавах, отмывку пигмента от водорастворимых солей, сушку и размол пигмента. В процессе гидротермальной термообработки на суспензию FeOOH воздействуют наносекундными электромагнитными импульсами со следующими характеристиками: длительность импульса 0,5-5 нс, амплитуда импульсов 4-10 кВ, частота повторения импульсов 200-1000 Гц, процесс проводят при температуре 130-200°С. Изобретение позволяет снизить температуру гидротермальной термообработки суспензии FeOOH и увеличить производительность процесса получения красного железоокисного пигмента. 1 табл.
(56) (продолжение): CLASS=”b560m”нанокристаллических оксидов Ti, Mn, Co, Fe и Zn в водных растворах при термообработке. Неорганические материалы, 2005, т.41, № 1, с.46-53.
Изобретение относится к технологии пигментов, а именно к способу получения красного железоокисного пигмента, используемого в лакокрасочной, полиграфической и керамической промышленности, производстве резины, бумаги, пластических масс и др. Известен прокалочный способ получения красного железоокисного пигмента, включающий стадии двухстадийной прокалки железного купороса, мокрого размола, классификации и отмывки от водорастворимых солей прокаленного продукта, сушки и размола пигмента (см.: Беленький Е.Ф., Рискин И.В. Химия и технология пигментов. Л.: Химия, 1974, с.392-393). Недостатками данного способа являются низкие качественные показатели пигмента из-за спекания отдельных кристаллов при прокалке, а также наличие трудно утилизируемых жидких (промывные воды) и газообразных (серосодержащие газы) отходов производства. Известен осадочный способ синтеза красного железоокисного пигмента, включающий стадии окисления раствора железного купороса (в том числе в присутствии металлического железа) при рН реакционной среды 3,5-4,5 и температуре 85-100°С в присутствии специально приготовленных зародышей, отмывки от водорастворимых солей, сушки и размола пигмента (см.: Ермилов П.И., Индейкин Е.А., Толмачев И.А. Пигменты и пигментированные лакокрасочные материалы. Л.: Химия, 1987, с.97-100). Недостатками данного способа являются низкая скорость синтеза пигмента (процесс окисления ведут в течение 50-100 ч) и связанные с этим высокая металло- и энергоемкость производства, а также дополнительные затраты на приготовление зародышей пигмента, массовая доля которых составляет до 10 мас.%. -1) водных растворов сульфата или суспензий гидроксида железа (II) кислородом воздуха при квазистационарных значениях температуры и рН реакционной среды; б) гидротермальной термообработки (ГТО) образовавшейся при окислении суспензии из оксигидроксидов железа (III) Основным недостатком автоклавного способа получения красного железоокисного пигмента является низкая скорость процесса химического превращения FeOOH Техническим результатом изобретения является снижение температуры стадии гидротермальной термообработки суспензии FeOOH и увеличение производительности процесса. Технический результат достигается тем, что в способе получения красного железоокисного пигмента, включающем стадии окисления водных растворов сульфата или суспензий гидроксида железа (II) кислородом воздуха при квазистационарных значениях температуры и рН реакционной среды, гидротермальной термообработки суспензии из оксигидроксидов железа (III) в периодическом или непрерывном режиме в автоклавах, отмывки пигмента от водорастворимых солейи и сушки, согласно изобретению в процессе гидротермальной термообработки на суспензию FeOOH воздействуют наносекундными электромагнитными импульсами со следующими характеристиками: длительность импульса 0,5-1 нс; амплитуда импульсов 6-8 кВ; частота повторения импульсов 500-1000 Гц, а процесс гидротермальной термообработки проводят при температурах 130-200°С, после сушки осуществляют размол пигмента. Инициирующее влияние НЭМИ на процесс химического превращения FeOOH Нижний предел длительности импульса 0,5 нс обусловлен тем, что генераторы с меньшей длительностью импульса имеют очень высокую стоимость. При длительности импульса более 5 нс (верхний предел) эффективность воздействия НЭМИ резко падает из-за уменьшения напряженности электрического поля внутри автоклава при дальнейшем увеличении длительности импульса в результате уменьшения скорости изменения напряжения и тока. Нижний предел величины амплитуды импульса обусловлен тем, что при амплитуде менее 4 кВ уменьшается скорость изменения напряжения и тока, а следовательно, уменьшается напряженность электрического поля внутри автоклава. Верхний предел амплитуды 10 кВ импульсов ограничивается техническими возможностями генератора. Нижний предел частоты повторения импульсов 200 Гц связан с минимальной величиной среднего значения энергии, которая подается в автоклав за время синтеза, необходимой для инициирования процесса превращения FeOOH. Верхний предел частоты повторения 1000 Гц ограничивается техническими возможностями генератора. Нижний предел температуры 130°С стадии гидротермальной обработки обусловлен тем, что при более низких температурах длительность процесса превращений FeOOH резко возрастает, что ведет к снижению производительности процесса; проведение процесса термообработки при температурах выше 200°С нецелесообразно в связи с увеличением энергоемкости данной стадии. Изобретение иллюстрируется следующими примерами. Пример 1 (прототип). Берут 0,5 л очищенного от механических примесей раствора сульфата железа (II), полученного растворением металлургического железного купороса, с концентрацией 1,3 моль/л и помещают его в герметичный сосуд объемом 1 дм3, снабженный самовсасывающим аэратором для перемешивания и окисления растворов (суспензий) железа(II) воздухом, устройствами дозирования газа и раствора щелочи, нагрева и термостатирования, измерения рН и температуры реакционной среды. Окисление проводят при квазипостоянных значениях температуры (45±2°С) и рН реакционной среды (5,5±0,5) кислородом воздуха при давлении 0,2 МПа. Величину рН поддерживают дозированием в сосуд водного раствора гидроксида натрия (квалификация “ч”) с концентрацией 10,3±0,1 моль/л. Длительность процесса окисления составила 20 мин. Получили 0,625 л суспензии однофазного Берут 7 мл полученной суспензии и помещают в автоклав объемом 10 см3, снабженный устройством для подачи наносекундных электромагнитных импульсов. Автоклав сначала быстро (в течение 15 мин) нагревают в муфельной печи, термостатированной при температуре 350°С, до температуры 180±5°С, затем помещают во вторую печь с температурой 180±2°С и подвергают изотермической термообработке в отсутствии НЭМИ в течение 2 ч. По окончании термообработки автоклав охлаждают под струей воды до комнатной температуры и разгерметизируют. Твердую фазу на воронке Бюхнера отделяют от маточного раствора, промывают водой до отсутствия в фильтрате качественной реакции на сульфат-ионы, высушивают при 70°С до постоянного веса и растирают в агатовой ступке. Фазовый состав полученного образца исследуют методом количественного рентгенофазового анализа, а его дисперсный состав – методами растровой и трансмиссионной микроскопии. Полученный при таких режимах образец представляет собой смесь двух фаз ( Пример 2 (прототип). Берут 7 мл суспензии Получен однофазный образец Примеры 3 и 4 (прототип). Окисление раствора сульфата железа (II) проводят аналогично примеру 1, за исключением режимов стадии окисления, которое ведут при температуре 35±2°С и рН реакционной среды 6,5±0,5. Длительность процесса окисления составила 10 мин. Получена суспензия смеси фаз Гидротермальную термообработку полученной суспензии проводили аналогично примеру 1, варьируя при этом температуры и длительность процесса. Конкретные режимы параметров термообработки, фазовый состав полученных образцов и средний размер кристаллов Пример 5 (предлагаемый способ). Окисление раствора сульфата железа (II) проводят аналогично примеру 1. Процесс термообработки суспензии Примеры 6-8 (предлагаемый способ) проводят аналогично примеру 5, варьируя при этом параметры НЭМИ, температуру и длительность термообработки. Фазовый состав красного железоокисного пигмента и средний размер кристаллов Пример 9 (предлагаемый способ). Окисление раствора сульфата железа (II) проводят аналогично примерам 3 и 4. Процесс термообработки суспензии Примеры 10-12 (предлагаемый способ) проводят аналогично примеру 5, варьируя при этом параметры НЭМИ, температуру и длительность термообработки. Фазовый состав красного железоокисного пигмента и средний размер кристаллов Из таблицы следует, что по сравнению с прототипом температура стадии гидротермальной термообработки суспензии FeOOH понижается на 30°С, а длительность этой стадии сокращается в 2-4 раза.
Формула изобретения
Способ получения красного железоокисного пигмента, включающий стадии окисления водных растворов сульфата или суспензий гидроксида железа (II) кислородом воздуха при квазистационарных значениях температуры и рН реакционной среды, гидротермальной термообработки суспензии из оксигидроксидов железа (III) в периодическом или непрерывном режиме в автоклавах, отмывки пигмента от водорастворимых солей и сушки, отличающийся тем, что в процессе гидротермальной термообработки на суспензию FeOOH воздействуют наносекундными электромагнитными импульсами со следующими характеристиками: длительность импульса 0,5-5 не, амплитуда импульсов 4-10 кВ, частота повторения импульсов 200-1000 Гц, а процесс гидротермальной термообработки проводят при температурах 130-200°С, кроме того, после сушки осуществляют размол пигмента.
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 11.01.2008
Извещение опубликовано: 20.11.2009 БИ: 32/2009
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||