|
(21), (22) Заявка: 2005128970/09, 20.09.2005
(24) Дата начала отсчета срока действия патента:
20.09.2005
(46) Опубликовано: 27.06.2007
(56) Список документов, цитированных в отчете о поиске:
SU 720563 A1, 05.03.1980. SU 1012370 A1, 15.04.1983. RU 97116492 A, 20.08.1999. DE 1588939, 21.05.1970. GB 1466659, 09.03.1977. US 4031497 A, 21.06.1977.
Адрес для переписки:
141980, Московская обл., г. Дубна, ул. Жуковского, 2а, ОАО “ГосМКБ “РАДУГА” им. А.Я. Березняка”, патентный отдел
|
(72) Автор(ы):
Дмитриев Владимир Сергеевич (RU), Карпов Сергей Иванович (RU), Куролес Владимир Кириллович (RU), Савчук Виктор Дмитриевич (RU), Трусов Владимир Николаевич (RU)
(73) Патентообладатель(и):
ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО “ГОСУДАРСТВЕННОЕ МАШИНОСТРОИТЕЛЬНОЕ КОНСТРУКТОРСКОЕ БЮРО “РАДУГА” ИМ. А.Я. БЕРЕЗНЯКА” (RU)
|
(54) ПРЕДОХРАНИТЕЛЬ
(57) Реферат:
Изобретение относится к электротехнике, к элементам защиты электрических сетей от перенапряжений. Техническим результатом является повышение быстродействия предохранителя. Электрический предохранитель содержит внутренний токопроводящий металлический элемент, а также сопряженный с ним по поверхности и электрически изолированный от него внешний токопроводящий элемент, выполненный из материала, температура объемного расширения которого меньше температуры объемного расширения внутреннего элемента. Внешний элемент выполнен с возможностью нарушения электропроводности при нагреве внутреннего токопроводящего металлического элемента. Внешний токопроводящий элемент выполнен в виде слоя. Внешний токопроводящий элемент может быть выполнен с возможностью восстановления его электропроводности после разрыва. 2 з.п. ф-лы, 3 ил.
Предлагаемое изобретение относится к электротехнике, к элементам защиты электрических сетей от перенапряжений.
Широко известны применяемые в электротехнике предохранители, выполненные в виде плавких элементов, например плавкий элемент предохранителя по а.с. №720563, выполненный из металла, обладающего окисной пленкой, а также слоя материала, обладающего антикоррозионными свойствами, температура плавления которого не выше температуры плавления плавкого элемента. Общим существенным признаком с предлагаемым техническим решением является электрический предохранитель, который содержит токопроводящий металлический элемент.
Известный плавкий элемент позволяет предохранителю стабильно срабатывать, однако в связи с общей для данных элементов предохранителей конструкцией – наличием плавкого элемента, время разрушения (срабатывания) которого весьма значительно, быстродействие данного предохранителя недостаточно и нередко защищаемые элементы сети выходят из строя.
Предлагаемым изобретением решается техническая задача повышения быстродействия предохранителя.
Для достижения указанного технического результата электрический предохранитель содержит внутренний токопроводящий металлический элемент, а также расположенный на его поверхности и электрически изолированный от него внешний токопроводящий элемент, выполненный из материала, температура объемного расширения которого меньше температуры объемного расширения внутреннего токопроводящего металлического элемента, и выполненный с возможностью нарушения электропроводности при нагреве внутреннего токопроводящего металлического элемента. При этом одним из наилучших вариантов выполнения внешнего токопроводящего элемента может быть слой, в котором для усиления эффективности срабатывания могут быть выполнены концентраторы напряжений. Для обеспечения возможности восстановления работоспособности предохранителя внешний токопроводящий элемент может быть выполнен с возможностью восстановления его электропроводности после остывания внутреннего токопроводящего металлического элемента.
При этом внутренний токопроводящий металлический элемент и внешний токопроводящий элемент (выполненный, например, в виде слоя или проволоки) могут быть включены между собой и сетью как последовательно, так и параллельно.
Отличительными признаками предлагаемого предохранителя являются следующие – наличие расположенного на поверхности внутреннего металлического элемента и электрически изолированного от него внешнего токопроводящего элемента, выполненного из материала, температура объемного расширения которого меньше температуры объемного расширения внутреннего элемента, а также внешний токопроводящий элемент может быть выполнен в виде слоя и его выполнение с возможностью восстановления электропроводности после остывания внутреннего токопроводящего металлического элемента.
Благодаря наличию данных отличительных признаков, в совокупности с известными, указанными в ограничительной части формулы, достигается следующий технический результат – повышается быстродействие предохранителя, а также появляется возможность его самопроизвольного восстановления. Технический результат достигается тем, что благодаря контакту между собой (плотной навивки проволоки или прилегания слоя пленки) при увеличении объема (размера) первого – внутреннего токопроводящего элемента при его нагреве (а не при расплавлении, как в прототипе) внешний токопроводящий элемент нарушает целостность и соответственно электропроводность. При этом чем выше разница коэффициентов объемного расширения материала элементов при нагреве, тем выше быстродействие системы.
В результате поиска по источникам патентной и научно-технической информации совокупность признаков, характеризующая предлагаемый предохранитель, не была обнаружена. Таким образом, предлагаемое изобретение соответствует критерию охраноспособности “новое”.
На основании сравнительного анализа предложенного технического решения с известным уровнем техники по источникам научно-технической и патентной литературы можно утверждать, что между совокупностью признаков, в том числе и отличительных, и выполняемыми ими функций и достигаемых целей существует неочевидная причинно-следственная связь. На основании выше изложенного можно сделать вывод о том, что техническое решение в предложенном устройстве не следует явным образом из уровня техники и, следовательно, соответствует критерию охраноспособности «изобретательский уровень».
Предложенное техническое решение может найти применение в любых электрических системах для предохранения их от превышения нагрузок как по току, так и по напряжению, а, следовательно, данное решение соответствует критерию «промышленно применимо».
Изобретение поясняется электрическими схемами фиг.1-3.
На фиг.1 и 2 изображена схема защиты цепи по току и напряжению без гальванической развязки (фиг.1 – последовательное, фиг.2 – параллельное).
На фиг.3 изображена схема защиты по напряжению с гальванической развязкой.
Изображенная на схеме фиг.1 цепь содержит встроенный в одну из фаз (можно во все) предохранитель, состоящий из последовательно соединенных внутреннего токопроводящего металлического элемента 2, выполненного, например, в виде медного стержня, имеющего припаянные к нему выводы, а также сопряженного с ним по поверхности внешнего токопроводящего элемента 3, выполненного в данном случае в виде навитой на первый элемент 1 проволоки из вольфрама или константана, к которой также приварены выводы. При этом электроизоляция 4 между элементами может быть достигнута, например, за счет окисной пленки на медном стержне или за счет нанесенного на медный стержень электроизоляционного напыления 2, а сам элемент заключен, например, в стеклянную колбу. Лавинный диод 5 включен в этой схеме между общим выводом двух элементов предохранителя и нагрузкой 6.
Изображенная на схеме фиг.2 цепь содержит предохранитель 1, состоящий из параллельно соединенных внутреннего токопроводящего металлического элемента 2, выполненного в виде медного стержня, к которому припаяны выводы, а также сопряженного с ним по поверхности внешнего токопроводящего элемента 3, выполненного в данном случае в виде напыленной на окисную пленку 4 стержня 1 пленку из вольфрама или константана, которая также имеет приваренные к ней выводы. При этом для улучшения срабатывания пленка слоя элемента 3 имеет расположенные диаметрально по отношению к элементу 2 концентраторы напряжений 7, выполненные в виде утоньшений слоя. Весь предохранитель 1 может быть заключен в стеклянную колбу, из которой выведены контакты элементов 2 и 3. При этом в данной схеме предохранитель с параллельным включением элементов 2 и 3 защищает нагрузку 6 лишь от превышения напряжения.
На фиг.3 изображен предохранитель 1, в котором элемент 2 – медный стержень, элемент 3 – напыленный слой константана, изоляционная пленка 4 – окисный слой. Предохранитель 1, включающий в себя элементы 2-4, подключен с гальванической развязкой первого 2 и второго 3 элементов через трансформатор 8. Лавинный диод 5 соединен с первым элементом 2 последовательно.
Во всех случаях работа предохранителя сводится к тому, что, нагреваясь, медный элемент 2 расширяется и разрывает элемент 3 с малым температурным расширением, только на схеме фиг.1 это проволочный элемент, а на фиг.2, 3 это пленка, в которой разрыв происходит в заданном месте – концентраторе напряжений (месте утоньшения пленки).
В схеме с понижающим трансформатором 8 фиг.3 свойства предохранителя 1 проявляются сильнее за счет того, что в случае превышения сетевого напряжения порога пробоя лавинного диода 5 к элементу 2 предохранителя 1 прикладывается большее напряжение, которое быстрее нагревает элемент 2, а, следовательно, и уменьшается задержка размыкания цепи питания низковольтового потребителя 6. При этом если внешний токопроводящий элемент 3 выполнить с возможностью восстановления его электропроводности после разрыва – нарушения электропроводности [выполнить упругим, как, например, выполняются металлофольговые тензорезисторы – патенты РФ №№2244970, 1119515, в основе работы которых лежит явление тензоэффекта, заключающееся в изменении сопротивления при их механической деформации (увеличении практически вплоть до бесконечности, т.е. разрыва проводимости)], то после возвращения напряжения (или тока) в норму и остывания элемента 2 (в схеме на фиг.3 восстановления пробоя диода 5), элемент 3 восстановит свою электропроводность и т.о. работоспособность всей системы, т.е. по сути предохранитель 1 будет работать в автоматическом режиме. В целом отличительным свойством такого предохранителя 1 является первичное размыкание низковольтной сети (или сети нагрузки), а затем уже питающей сети. Благодаря этому свойству энергия, запасенная в трансформаторе 8, проходит в момент размыкания не в нагрузку 6, а в сеть, т.е. происходит послеимпульс (или задний фронт импульса перенапряжения), вызванный э.д.с. самоиндукции в проводах или трансформаторе 8, в нагрузку не проходит.
Формула изобретения
1. Электрический предохранитель, характеризующийся тем, что содержит внутренний токопроводящий металлический элемент, а также расположенный на его поверхности и электрически изолированный от него внешний токопроводящий элемент, выполненный из материала, температура объемного расширения которого меньше температуры объемного расширения внутреннего токопроводящего металлического элемента и выполненный с возможностью нарушения электропроводности при нагреве внутреннего токопроводящего металлического элемента.
2. Предохранитель по п.1, отличающийся тем, что внешний токопроводящий элемент выполнен в виде слоя.
3. Предохранитель по п.2, отличающийся тем, что внешний токопроводящий элемент выполнен с возможностью восстановления его электропроводности после остывания внутреннего токопроводящего металлического элемента.
РИСУНКИ
|
|