Патент на изобретение №2158036
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ АЛМАЗНЫХ ПЛЕНОК МЕТОДОМ ГАЗОФАЗНОГО СИНТЕЗА
(57) Реферат: Изобретение относится к получению высокоэффективных пленок для полевых эмиттеров электронов. Способ заключается в зажигании тлеющего разряда постоянного тока в разрядном промежутке между катодом и анодом в потоке водорода, нагреве подложки до 700-900°С, в подаче углеводородсодержащего газа в поток, осаждении алмазной пленки при плотности разрядного тока 0,3-2 А/см2 в смеси водорода с углеродсодержащим газом, при концентрации углеродсодержащего газа в газовом потоке 3-10% и удаление излишков графитовой фазы в разряде в потоке водорода. В качестве углеродсодержащего газа может использоваться метан с концентрацией 3-8% в газовом потоке. При осаждении алмазной пленки как на диэлектрическую, так и на проводящую подложку подложка может быть расположена на заземленном или изолированном подложкодержателе вне разрядного промежутка на расстоянии 0,1-5 мм от анода. При этом анод выполняют в виде сетки из молибденовой проволоки диаметром 0,1-1 мм с шагом 1-3 мм. Осаждение алмазной пленки до требуемой толщины проводят при концентрации метана в газовом потоке 3-8%. Удаление излишков графитовой фазы проводят в разряде в потоке водорода в течение 5-10 мин. Техническим результатом является получение алмазных пленок с высокими электронно-эмиссионными характеристиками. 3 з.п. ф-лы, 4 ил. Изобретение относится к области получения высокоэффективных пленок для полевых эмитеров электронов, которые могут быть использованы для создания плоских дисплеев, в электронных микроскопах, СВЧ электронике и ряде других приложений. Известен способ получения пленки аморфного алмаза методом лазерного распыления, который заключается в осаждении на холодную подложку углерода, испаряемого из графитовой мишени излучением мощного лазера. Недостатком такого метода является его сложность, дороговизна, ограниченные возможности масштабирования, а также низкая плотность эмитирующих центров (порядка 1000 на см 2 при поле 20 В/мкм), что явно недостаточно для создания полноцветного монитора с 256 градациями яркости. Известен способ получения алмазных пленок методом газофазного синтеза, включающий зажигание тлеющего разряда постоянного тока в разрядном промежутке между катодом и анодом в потоке водорода, нагрев подложки до температуры осаждения, подачу углеродсодержащего газа в поток и осаждении алмазной пленки в смеси водорода с углеродсодержащим газом, удаление излишков графитовой фазы в разряде в потоке водорода [1]. Разряд горит при плотности тока порядка 1 А/см2нагрев осуществлялся до температуры 1000oC, осаждение проводилось в потоке смеси водорода с метаном при концентрациях метана от 0.3 до 3%. При таких параметрах способа осаждаемые алмазные пленки имеют поликристаллическую структуру с микронным размером микрокристаллитов. Основой для использования алмазных материалов в качестве холодных эмитеров электронов является свойство отрицательного электронного сродства, присущее алмазу. Однако получаемые описанным способом алмазные пленки также не обладают эмиссионными свойствами, достаточными для создания катода для полноцветного монитора, поскольку плотность эмитирующих центров не более 1000 на см2, в то время как требуется более 105. До настоящего времени все попытки создать высокоэффективный эмитер электронов на основе поликристаллических алмазных пленок нельзя считать успешними, в частности в связи с крайне низкой плотностью эмитирующих центров, Целью предлагаемого изобретения является получение алмазных пленок с высокими электронно-эмиссионными характеристиками, которые могут быть использованы в качестве полевых эмитеров электронов при создании плоских дисплеев, в электронных микроскопах, СВЧ электронике и ряде других приложений. Предлагаемый способ получения алмазных пленок методом газофазного синтеза включает зажигание тлеющего разряда постоянного тока в разрядном промежутке между катодом и анодом в потоке водорода, нагрев подложки до температуры осаждение, подачу углеродсодержащего газа в поток и осаждени алмазной пленки в смеси водорода с углеродсодержащим газом, удаление излишков графитовой фазы в разряде в потоке водорода. Отличие предлагаемого способа заключается в том, что нагрев подложки осуществляют до температуры 700 – 900oC, осаждение алмазной пленки проводят при плотности разрядного тока 0.3 – 2 А/см2 при концентрации углеродсодержащего газа в газовом потоке 3-10%. При этом в качестве углеродсодержащего газа при осаждении алмазной пленки может быть использован метан с концентрацией 3-8% в газовом потоке. Осаждение алмазной пленки проводят на диэлектрическую или проводящую подложку, расположенную на заземленном или изолированном подложкодержателе вне разрядного промежутка на расстоянии 0.1 – 5 мм от анода, выполненного в виде сетки из молибденовой проволоки диаметром 0.1 – 1 мм с шагом 1 – 3 мм, при температуре анода 1200 – 2000oC, при концентрации метана в газовом потоке 3-8% до требуемой толщины, а затем в разряде в потоке водорода удаляются излишки графитовой фазы. При осаждении алмазной пленки на проводящую подложку, расположенную на аноде, осаждение алмазной пленки до требуемой толщины проводят при концентрации метана в газовом потоке 3-8% и удаляют излишки графитовой фазы. При осаждении алмазной пленки на кремниевую подложку проводят удаление естественного окисла кремния с подложки в потоке водорода, создают на подложке слой карбида кремния при подаче в газовый поток 7 – 12% метана в течениt 10 – 20 мин при токе 0.3 – 2 A/см2 и проводят осаждение алмазной пленки до требуемой толщины при концентрации метана в газовом потоке 3-8%. При нагреве подложки ниже температуры 700oC происходит осаждение только графитовой фазы, а выше 900oC происходит осаждение поликристаллической пленки с микронным размером микрокристаллов. При плотности тока разряда выше 2 А/см2 происходит развитие неустойчивости разряда, а ниже 0.3 А/см2 не происходит достаточной активации газовой фазы. При использовании концентрации углеродсодержащего газа ниже 3% происходит осаждение неэмитирующей пленки, а выше 10% растет графит. Как показали результаты исследований использование в качестве углеродо-содерщащего газа метана позволяет получить наиболее высокие эмиссионные характеристики. В этом случае концентрация метана не должна превышать 8%. Предлагаемый способ позволяет проводить осаждение как на проводящие, так и диэлектрические подложки, а также на кремниевую подложку, которая при нагреве в указанном диапазоне температур приобретает проводящие свойства. При проведении осаждения на диэлектрическую или проводящую подложку вне разрядного промежутка анод выполняется в виде сетки для пропускания тока, а подложка располагается под анодом “вниз по потоку” на заземленном или изолированном подложкодержателе вне разрядного промежутка. Расположение подложкодержателя на расстоянии менее 0.1 мм от анода не технологично, а на расстоянии более 5 мм происходит либо осаждение графита, либо осаждение пленки не происходит вовсе. Разогрев анода ниже 1200oC не приводит к необходимой дополнительной термической активации газовой смеси, а выше 2000oC приводит к карбидизации нитей. Анод выполняется в виде сетки из молибденовой проволоки, исходя из требований высокотемпературной стойкости до 2000oC, низкой распыляемости и химической активности в потоке водорода с углеродсодержащим газом. Анод, выполненный из проволоки диаметром менее 0.1 мм, не позволяет пропускать требуемую плотность тока. Выполнение анода в виде сетки из проволоки диаметром выше 1 мм не позволяет разогреть его до требуемой температуры порядка 1200oC. Шаг сетки менее 1 мм приводит к излишнему затенению подложки, а более 3 мм к большой неоднородности. В случае осаждения алмазной пленки на кремниевую подложку достаточно толстый слой карбида кремния при подаче в газовый поток менее 7 % метана не успевает образоваться до роста алмазной пленки, а при подаче метана в газовый поток выше 12% разряд неустойчив. Время создания карбидного слоя определяется скоростью его образования и роста до толщины порядка доли микрометра. В результате осаждения алмазной пленки предлагаемым способом образовывалась нанокристаллическая алмазная пленка. Установлено, что именно за счет нанокристаллической структуры пленки возможно получение алмазных пленок с улучшенными (рекордными) по плотности тока, порогу эмиссии, плотности эмитирующих центров эмиссионными свойствами. Изобретение поясняется чертежами, где на фиг.1 схематично изображена установка газофазного синтеза, на которой осуществятся способ, на фиг. 2 изображено расположение подложки на аноде, а на фиг. 3 – расположение подложки под анодом, на фиг.4 представлено электронно-микроскопическое изображение алмазной пленки, полученной предлагаемым способом. Установка состоит из источника тока (1), баластного сопротивления (2), катода (3), выполненный из молибдена, буферного объема (4), газовых трактов (5), анода (6) и подложкодержателя (7), на котором располагается подложка (8), насосов (9) и камеры (10). Способ осуществляется следующим образом. Камера (10) откачивается с помощью насосов (9) до достижения необходимого вакуума, затем по одному из газовых трактов (5) в камеру подается водород. На катод (3) подается от источника постоянного тока (1) через балластное сопротивление (2) напряжение, необходимое для пробоя и поддержания разряда. Разряд или нагреватель обеспечивают нагрев подложки (8) до необходимой температуры (700-900)oC. После этого по другому газовому тракту (5) через буферный объем (4) в газовый поток добавляется углеродсодержащий газ при концентрации в газовом потоке 3 -10%, осаждение алмазной пленки проводят при плотности разрядного тока 0.3 – 2 А/см2. Перед удалением излишков графитовой фазы прекращают подачу углеродсодержащего газа и удаление производят в разряде в потоке водорода. Примеры реализации способа Пример 1. Осаждение алмазной пленки на кремниевую подложку. Анод (6) выполнен в виде молибденовой сетки из проволоки диаметром порядка 0.3 мм с шагом порядка 2 мм. Подложкодержатель (7) с подложкой (8) располагался под сетчатым анодом (6) на расстоянии 3 мм (фиг. 3). Сетка и подложкодержатель заземлены. В качестве подложки использовался кремний, который был предварительно обработан одним из стандартных способов для увеличения концентрации центров нуклеации. Источник тока мог обеспечивать ток 1-10 А при напряжении 500-1000 В. Температура осаждения 700-900oC Процесс осаждения на кремниевой подложке включал следующие стадии: Камера откачивалась до давления 10-4 – 10-5 Topр. После чего в нее напускался водород 50 – 300 Topр. Прикладывалось напряжение, необходимое для пробоя и поддержания разряда. Обеспечивался нагрев подложки до необходимой температуры. В течение 10-20 мин в водороде при плотности тока 0.3-2 А/см2 происходило удаление окисла кремния. После этого в газовый поток добавлялся метан (7 – 12%) и в течение 10 – 20 мин происходило образование слоя карбида кремния. Этот слой необходим как для увеличения адгезии алмазной пленки к кремнию, так и для улучшения условий инжекции электронов из кремния в алмазную пленку. Затем концентрация метана снижалась до 3 – 8% и происходил рост алмазной пленки со скоростью 10 – 20 мкм/ч. После выращивания пленки необходимой толщины (обычно несколько микрон) поток метана отключался и происходил отжиг пленки в водороде в течение 5-10 мин для удаления графитивого слоя с поверхности пленки. Осаждаемая алмазная пленка имеет нанокристаллическую структуру. Электронно-микроскопическое изображение этой пленки (фиг. 4) подтвердило, что пленка действительно нанокристаллическая. Это же подтвердили исследования с помощью сканирующего туннельного микроскопа. Из рентгеновской дифрактограммы пленки следует, что пленка алмазная с размером области когерентного рассеяния порядка 10 – 50 нм. Вольт-амперные характеристики и исследования распределения тока эмиссии показали, что порог эмиссии всего несколько вольт на микрон (есть образцы с порогом 3 – 4 В/мкм). Достигнута плотность тока более 100 мА/см2. Области эмиссии расположены под анодной проволокой. Для достижения однородности было использовано сканирование анода или подложки с частотой 1 – 100 Гц. В результате были получены пленки с однородным распределением тока эмиссии. Использование данной конфигурации “вниз по потоку” возможно при осаждении как на диэлектрическую, так и на проводящую подложки. При этом параметры пленки аналогичны описаным выше. Пример 2 Процесс осаждения на металлическую подложку несколько отличается от процесса осаждения на кремниевую подложку, что связано с различной химической активностью металлов и кремния. Камера откачивалась до давления (10 – 4) – (10 – 5) Topр. После чего в нее напускался водород 50 – 300 Topр. Прикладывалось напряжение необходимое для пробоя и поддержания разряда. Обеспечивался нагрев подложки до необходимой температуры (700-900oC). Стадии удаления окисла здесь не требуется. После этого в газовый поток добавлялся метан (3-8%) и происходил рост алмазной пленки со скоростью 10 – 20 мкм/ч. Из-за высокой скорости карбидообразования у таких металлов как молибден, вольфрамм, тантал специальной стадии образования карбидного слоя не требуется. После выращивания пленки необходимой толщины (обычно несколько микрон) поток метана отключался и происходил отжиг пленки в водороде для удаления графитового слоя с поверхности пленки. Характеристики алмазной пленки, полученные при осаждении на металлическую подложку, аналогичны характеристикам алмазных пленок, полученных при осаждении на кремниевую подложку. Источники информации 1. POLUSHKIN V. M. et. al. Diamond and Related Materals, 1994, 3, p. 531-533. Формула изобретения
РИСУНКИ
|
||||||||||||||||||||||||||