Патент на изобретение №2297881

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2297881 (13) C2
(51) МПК

B01J31/18 (2006.01)
C07C31/20 (2006.01)
C07C29/16 (2006.01)

B01J31/20 (2006.01)
B01J31/28 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.12.2010 – может прекратить свое действие

(21), (22) Заявка: 2003136428/04, 16.05.2002

(24) Дата начала отсчета срока действия патента:

16.05.2002

(30) Конвенционный приоритет:

18.05.2001 (пп.1-8) US 60/291,826

(43) Дата публикации заявки: 20.04.2005

(46) Опубликовано: 27.04.2007

(56) Список документов, цитированных в отчете о
поиске:
US 4935547 А, 19.06.1990. US 5841003 А, 24.11.1998. RU 2149156 C1, 20.05.2000. US 5585528 А, 17.12.1996. RU 2142934 С1, 20.12.1999. US 4433177 А, 21.02.1984. US 4238357 А, 09.12.1980. MATSUZAKA. H. et. al. “Chemistry of cobalt-ruthenium mixed metal clusters and mixed metal complexes” ritrieved from STN, abstract, structure NIPPON KAGAKU KAISHI, №5,

(85) Дата перевода заявки PCT на национальную фазу:

18.12.2003

(86) Заявка PCT:

EP 02/05477 (16.05.2002)

(87) Публикация PCT:

WO 02/094425 (28.11.2002)

Адрес для переписки:

129010, Москва, ул. Б.Спасская, 25, стр.3, ООО “Юридическая фирма Городисский и Партнеры”, пат.пов. Е.Е.Назиной, рег. № 517

(72) Автор(ы):

АЛЛЕН Кевин Дейл (US),
ДЖЕЙМС Толмадж Гейл (US),
НИФТОН Джон Фредерик (US),
ПАУЭЛЛ Джозеф Браун (US),
СЛОУ Линн Хенри (US),
ВЕЙДЕР Пол Ричард (US),
УИЛЛЬЯМС Тимоти Скотт (US)

(73) Патентообладатель(и):

ШЕЛЛ ИНТЕРНЭШНЛ РИСЕРЧ МААТСХАППИЙ Б.В. (NL)

(54) КОМПОЗИЦИЯ КАТАЛИЗАТОРА И ОДНОСТАДИЙНЫЙ СПОСОБ ПОЛУЧЕНИЯ 1,3-ПРОПАНДИОЛА ИЗ ЭТИЛЕНОКСИДА И СИНТЕТИЧЕСКОГО ГАЗА С ПОМОЩЬЮ КОМПОЗИЦИИ КАТАЛИЗАТОРА С N-ГЕТЕРОЦИКЛИЧЕСКИМ ЛИГАНДОМ

(57) Реферат:

Изобретение относится к синтезу алифатического 1,3-диола из этиленоксида и синтетического газа в одну стадию. Настоящее изобретение также относится к альтернативной биметаллической композиции катализатора, которая содержит а) компонент кобальта, включающий в себя одно или несколько нелигированных соединений карбонила кобальта; и b) компонент рутения, включающий в себя соединение карбонила рутения, лигированное N-гетероциклическим лигандом, выбранным из группы, состоящей из бидентатных и мультидентатных N-гетероциклических лигандов. Способ получения 1,3-пропандиола включает в себя стадии: (а) контактирование, в реакционной смеси, этиленоксида, моноокиси углерода, водорода, инертного реакционно растворителя и композиции катализатора, указанной выше; и (б) нагревание указанной смеси до температуры от 30 до 150°С и давления от 100 до 4000 фунт/кв.дюйм (от 690 до 27580 кПа), в течение времени, эффективного для получения двухфазной смеси реакционных продуктов, содержащих верхнюю фазу, содержащую основную часть растворителя, по меньшей мере, 50% массовых композиции катализатора, плюс непрореагировавший этиленоксид, и нижнюю фазу, которая содержит основную часть 1,3-пропандиола. Технический результат – хорошие значения выхода при мягких условиях, при одностадийном синтезе 1,3-пропандиола, и хорошая стабильность композиции катализатора. 2 н. и 6 з.п., ф-лы, 19 табл., 5 ил.

(56) (продолжение):

CLASS=”b560m”may 1988 (1988-05) p.705-7113, ISSN: 0369-4577. WO 9418149 A1, 18.08.1994. US 4665222 А, 12.05.1987.

Область изобретения

Настоящее изобретение относится к синтезу алифатического 1,3-диола, в частности 1,3-пропандиола, из этиленоксида и синтетического газа в одну стадию. Более конкретно настоящее изобретение относится к катализатору, который обеспечивает хорошие значения выхода при мягких условиях, при одностадийном синтезе 1,3-пропандиола, и демонстрирует преимущества по отношению к стоимости и стабильности к окислению. Катализатор по настоящему изобретению содержит гомогенный биметаллический катализатор на основе кобальта-рутения, плюс бидентатный N-гетероциклический лиганд или мультидентатный N-гетероциклический лиганд.

Предпосылки изобретения

Алифатические 1,3-диолы, в частности 1,3-пропандиол, имеют множество применений в качестве мономерных звеньев для сложного полиэфира и полиуретана, и в качестве исходных материалов для синтеза циклических соединений. Например, полимер CORTERRA (торговая марка) представляет собой сложный полиэфир, характеризующийся выдающимися свойствами, который получают из 1,3-пропандиола (далее 1,3-PDO) и терефталевой кислоты. В данной области существует большой интерес к обнаружению новых способов для синтеза 1,3-PDO, которые являются эффективными, экономичными и демонстрируют преимущества способа.

US-A-3463819 и 3456017 описывают гидроформилирование этиленоксида для получения 1,3-пропандиола и 3-гидроксипропанала (далее, 3-HPA), с использованием модифицированного третичным фосфином катализатора на основе карбонила кобальта.

US-A-5304691 описывает способ гидроформилирования этиленоксида до 3-гидроксипропанала и 1,3-пропандиола на одной стадии, с использованием усовершенствованной каталитической системы, содержащей кобальт-лиганд третичного фосфина, в сочетании с катализатором на основе рутения. US-A-5304691, 1,3-PDO и 3-HPA получают путем приведения в тесный контакт оксирана, в частности этиленоксида (далее, EO), модифицированного дитретичным фосфином катализатора на основе карбонила кобальта, промотора катализатора на основе рутения и синтетического газа (моноокиси углерода и водорода), в инертном реакционном растворителе, при условиях реакции гидроформилирования. Сообщают о выходе PDO до 86-87% молярных, с использованием катализатора, содержащего кобальт, лигированный 1,2-бис(9-фосфабициклононил)этаном, в качестве бидентатного лиганда, и, либо трирутений(0)додекакарбонила, либо бис[рутений трикарбонил дихлорида], в качестве совместно действующего катализатора.

US-A-5841003 описывает способ для получения алкандиолов, таких как 1,3-пропандиол, с использованием катализатора, полученного из соединения карбонила кобальта, к которому может быть добавлено, в качестве промотора, соединение карбонила рутения.

US-A-5585528 описывает способ для получения 1,3-пропандиола, включающего в себя катализатор, содержащий соединение карбонила кобальта, к которому, в качестве промотора, может быть добавлен третичный амин.

WO-A-96/10552 описывает способ для получения 1,3-алкандиолов, включающих в себя катализатор, содержащий соединение карбонила кобальта, к которому, в качестве промотора, может быть добавлен третичный амин.

US-A-4433177 описывает катализатор для получения ацетальдегида из метанола, моноокиси углерода и водорода, содержащий порошок рутения, кобальтсодержащее соединение и промотор на основе амина.

Получение 1,3-PDO в одну стадию, с минимальным количеством примесей и побочных продуктов, включает в себя рециклирование и требует каталитической системы с хорошей стабильностью как во время синтеза 1,3-PDO, так и во время извлечения и рециклирования продукта. Было бы также желательным, если бы была доступна система катализаторов, которая приводит к получению 1,3-PDO на одной стадии, с хорошими значениями выхода, и характеризуется более высокой стабильностью к окислению во время синтеза и рециклирования 1,3-PDO. В дополнение к этому фосфиновые лиганды являются относительно дорогими, и было бы желательным иметь вариант системы лигандов, который обеспечивает указанные выше преимущества, но является не таким дорогим.

Краткое описание

В соответствии со всем, изложенным выше, настоящее изобретение предусматривает альтернативу использования фосфиновых лигандов в композиции катализатора гидроформилирования. Лиганды по настоящему изобретению обеспечивают менее дорогую альтернативу, обладают способностью к формированию стабильных комплексов c переходными металлами группы VIII и обеспечивают хорошую стабильность к окислению. Настоящее изобретение предусматривает композицию катализатора, содержащую:

a) компонент кобальта, содержащий один или несколько нелигированных соединений карбонила кобальта; и

b) компонент рутения, содержащий соединение карбонила рутения, лигированное N-гетероциклическим лигандом, выбранным из группы, состоящей из бидентатных и мультидентатных N-гетероциклических лигандов.

Бидентатные и мультидентатные N-гетероциклические соединения обладают потенциальными преимуществами более высокой стабильности к окислению, коммерческой доступности (по меньшей мере, в определенных случаях), потенциально более низкой стоимости и способности к формированию стабильных комплексов c переходными металлами группы VIII. Например, комплексы 2,2′-дипиридил-рутений, среди прочего, как показано, демонстрируют долговременную стабильность при гидроформилировании (при условиях давления синтетического газа).

Новый катализатор гидроформилирования оксиранов по настоящему изобретению содержит комплекс, который, как полагается, представляет собой комплекс рутений-N-гетероциклический лиганд:кобальт. Характерной особенностью нового катализатора является использование бидентатного или мультидентатного N-гетероциклического лиганда, лигированного скорее с рутением, чем с кобальтом, как в случае US-A-5304691. Настоящее изобретение также предусматривает одностадийный способ для получения 1,3-диола, включающий в себя взаимодействие оксирана с синтетическим газом при условиях гидроформилирования, в инертном растворителе, в присутствии каталитического комплекса по настоящему изобретению.

В частности, настоящее изобретение предусматривает способ получения 1,3-пропандиола, включающий в себя стадии:

(a) контактирование, в реакционной смеси, этиленоксида, моноокиси углерода, водорода, инертного реакционного растворителя и композиции катализатора, содержащей:

(i) один или несколько нелигированных соединений карбонила кобальта; и

(ii) соединение карбонила рутения, лигированное N-гетероциклическим лигандом, выбранным из группы, состоящей из бидентатных и мультидентатных N-гетероциклических лигандов; и

(b) нагревания указанной смеси до температуры от 30 до 150°C и давления от 100 до 4000 фунт/кв.дюйм (от 690 до 27580 кПа), в течение времени, эффективного для создания двухфазной смеси продуктов реакции, содержащей верхнюю фазу, содержащую основную часть растворителя, по меньшей мере, 50% массовых композиции катализатора, плюс непрореагировавший этиленоксид, и нижнюю фазу, которая содержит основную часть 1,3-пропандиола.

Краткое описание чертежей

Настоящее изобретение теперь будет описываться посредством примеров, со ссылками на прилагаемые чертежи, в которых:

Фиг.1 представляет собой ИК спектр катализатора на основе кобальта-рутения-2,4,6-трипиридил-втор-триазина (TPTZ), после предварительного формирования в 1,3-диоксолане;

Фиг.2 – собой трехмерный график ИК спектров, демонстрирующий формирование катализатора Co-Ru-TPTZ как функцию времени;

Фиг.3 демонстрирует ИК спектр катализатора Co-Ru-TPTZ во время одностадийного преобразования этиленоксида и синтетического газа в 1,3-пропандиол;

Фиг.4 представляет собой трехмерный график ИК спектров, демонстрирующий катализатор Co-Ru-TPTZ во время одностадийного синтеза 1,3-PDO; и

Фиг.5 – собой диаграмму, изображающую времена поглощения EO для катализатора кобальт-рутений-2,2′-дипиридил, соллюбилизированного в 1,3-диоксолане, когда он используется для одностадийного синтеза 1,3-пропандиола.

Подробное описание изобретения

Селективное гидроформилирование/гидрирование этиленоксида до 1,3-PDO на одной стадии, представляемое:

демонстрируется с использованием гомогенной каталитической системы на основе кобальта-рутения в сочетании c растворимыми бидентатными или мультидентатными N-гетероциклическими лигандами. N-гетероциклические лиганды, которые обеспечивают хорошие результаты, включают в себя, например, коммерчески доступный 2,2′-дипиридил, 2,2′-бипиримидин и 2,4,6-трипиридил-втор-триазин.Одностадийный способ для синтеза 1,3-PDO, в целом, включает в себя приведение в тесный контакт этиленоксида, моноокиси углерода и водорода (синтетического газа), при молярном отношении моноокиси углерода к водороду от 4:1 до 1:6, и биметаллического катализатора в жидкофазном растворе, в инертном реакционном растворителе, при температуре от 30 до 150°C и при повышенном давлении.

Использование новой Co-Ru-N-гетероциклической системы требует определенных изменений при синтезе, по сравнению с работой, где фосфиновый лиганд лигируется к соединению Co, в такой как US-A-5304691. Важные аспекты одностадийного способа по настоящему изобретению включают в себя необходимость в конкретных растворителях, использование обогащенного водородом синтетического газа и работы при несколько более высоком давлении. Предпочтительные растворители включают в себя простые циклические и алифатические эфиры. Предпочтительное рабочее давление является близким к 2000 фунт/кв.дюйм (13790 кПа), в то время как в случае фосфина, лигированного с Co, предпочтительное давление является близким к 1500 фунт/кв.дюйм (10340 кПа).

Другие факторы, важные при разработке этого химического механизма, включают в себя эффективное извлечение PDO из растворов сырого оксонированного продукта и рециклирование активного Co-Ru-N-гетероциклического катализатора.

1,3-Диолы получают путем загрузки оксирана, катализатора, необязательно, совместно действующего катализатора и/или промотора катализатора и реакционного растворителя в реактор высокого давления, вместе с введением синтетического газа (смеси водорода и моноокиси углерода, лучше при молярном отношении от 1:1 до 8:1, предпочтительно от 2:1 до 6:1), при условиях гидроформилирования.

Способ по настоящему изобретению может осуществляться как способ периодического типа, непрерывный способ или их сочетание.

В предпочтительном воплощении настоящего изобретения отдельные, объединенные или распределенные по времени потоки EO, синтетического газа и катализатора загружаются в реакционную емкость, которая может представлять собой реакционную емкость высокого давления, такую как барботажная колонна или автоклав с мешалкой, работающую в загрузочном или в непрерывном режиме.

Оксираны, содержащие до 10 атомов углерода, предпочтительно до 6 атомов углерода, и этиленоксид, в частности, могут преобразовываться в соответствующие им 1,3-диолы, посредством реакции гидроформилирования с синтетическим газом, в присутствии каталитического комплекса по настоящему изобретению.

Главной частью настоящего изобретения является использование Co-Ru-бидентатного или мультидентатного N-гетероциклического комплекса. Комплекс по настоящему изобретению, как предполагается, включает в себя новый класс рутений-модифицированных катализаторов. Характерная особенность этого нового класса включает в себя окисленный металлический рутений, который лигируется бидентатным или мультидентатным N-гетероциклическим лигандом, c соединением кобальта, в качестве противоиона. Отношение лиганда к атому рутения предпочтительно составляет от 2:1 до 1:2, более предпочтительно, примерно 1:1.Окислительное состояние атома рутения не является вполне определенным (в теории, рутений может иметь валентность от 0 до 8), таким, которое может монотонно изменяться в ходе реакции гидроформилирования. Соответственно молярное отношение рутения к кобальту может изменяться в относительно широких пределах. Должно быть добавлено количество кобальта (0), достаточное для полного окисления всего используемого рутения, присутствующего в виде комплексов. Может быть добавлен избыток кобальта, но какого-либо его определенного значения не существует. Соответственно молярное отношение изменяется от 4:1 до 1:4, предпочтительно, от 2:1 до 1:3, более предпочтительно, от 1:1 до 1:2.

Большое число N-гетероциклических соединений идентифицировано в качестве пригодных для использования лигандов, для одностадийного синтеза PDO, с использованием пары катализаторов на основе кобальта-рутения. Пригодные для использования типы бидентатных и мультидентатных N-гетероциклических лигандов включают в себя, но не ограничиваются этим.

Диазины, такие как пиримидин, пиразин, пиридазин, а также бензодиазины, такие как хиназолин и хиноксалин; биспиридины, такие как 2,2′-дипиридил (DIPY), 2,2′-бипиримидин (BPYM), 1,10-фенантролин (PHEN), ди-2-пиридил кетон, 4,4′-диметил-2,2′-дипиридил, 5,6-диметилфенантролин, 4,7-диметилфенантролин, 2,2′-бихинолин, неокупроин и 2,2′-дипиридиламин; мультипиридины, такие как 2,4,6-трипиридил-втор-триазин (TPTZ), 3,6-ди-2-пиридил-1,2,4,5-тетразин, 2,2′:6′,2″-терпиридин, 2,3-бис(пиридил)пиразин и 3-(2-пиридил)-5,6-дифенил-1,2,4-триазин; и некоторые 2,6-пиридил-диимины, такие как 2,6-бис(N-фенил, метилимино)пиридин и 2,6-бис[N-(2,6-диизопропилфенил)метилимино]пиридин.

Хорошие результаты демонстрируются в приведенных здесь примерах с использованием 2,2′-дипиридила (DIPY), 2,2′-бипиримидина (BPYM) и 2,4,6-трипиридил-втор-триазина (TPTZ). Структуры этих трех N-гетероциклов являются следующими:

Пригодные для использования источники кобальта также включают в себя соли, которые восстанавливаются до состояния нулевой валентности путем тепловой обработки в атмосфере водорода и моноокиси углерода, например, синтетического газа. Примеры таких солей включают в себя, например, карбоксилаты кобальта, такие как ацетаты и октаноаты, которые являются предпочтительными, а также соли кобальта и минеральных кислот, такие как хлориды, фториды, сульфаты и сульфонаты. Применяются также смеси этих солей кобальта. Является предпочтительным, однако, чтобы, когда используются смеси, по меньшей мере, один компонент смеси был алканоатом кобальта из 6-12 атомов углерода. Восстановление может осуществляться до использования катализаторов, или оно может осуществляться одновременно c процессом гидроформилирования, в зоне гидроформилирования.

Противоион, для получения наилучших результатов, как предполагается, представляет собой карбонил кобальта, в частности, анион тетракарбонила кобальта ([Co(CO)4]), имеющий характерную ИК полосу карбонила кобальта в области от 1875 до 1900 см-1, в частности в области 1888 см-1. Однако этот ион, в активном катализаторе, может представлять собой его модификацию. Часть соединения кобальта может быть модифицирована с помощью N-гетероциклического лиганда, например, в избытке до 75% молярных, скажем, до 50% молярных, или менее. Однако противоион предпочтительно представляет собой нелигированный анион тетракарбонила кобальта, рассмотренный выше. Карбонилы кобальта могут генерироваться путем взаимодействия исходного источника кобальта, такого как гидроксид кобальта, с синтетическим газом, как описывается в J. Falbe, “Carbon Monoxide in Organic Synthesis”, Springer-Verlag, NY (1970).

Молярное стехиометрическое отношение кобальт:рутений:N-лиганд соответственно находится в пределах от 0,5 до 4 молей кобальта: от 0,3 до 2 молей рутения: от 0,1 до 2 молей N-лиганда. Предпочтительный диапазон должен составлять от 1 до 3 молей кобальта, к 0,5-1,5 моля рутения, к 0,5-1 молю N-лиганда. Хорошо работающий препарат представляет собой, например, кобальт:рутений:2,4,6-трипиридил-втор-триазин при молярной стехиометрии 2:1:0,7. Предпочтительный препарат представляет собой кобальт:рутений:2,2′-бипиримидин или 2,2′-дипиридил, при молярной стехиометрии от 2:1:1 до 1:1:1. Предпочтительно, соединение кобальта представляет собой дикобальт октакарбонил, соединение рутения представляет собой трирутений додекакарбонил, и N-гетероциклический лиганд представляет собой 2,2′-бипиримидин или 2,2′-дипиридил, в котором молярное отношение Co:Ru:лиганд предпочтительно составляет от 2:1:1 до 1:1:1, или соединение кобальта представляет собой дикобальт октакарбонил, соединение рутения представляет собой трирутений додекакарбонил, и N-лиганд представляет собой 2,4,6-трипиридил-втор-триазин, в котором молярное отношение Co:Ru:лиганд составляет примерно 2:1:0,7. Нелигированный карбонил рутения, как предполагается, представляет собой гораздо менее активные частицы, и, по этой причине, препарат катализатора стремится к лигированию каждого атома рутения.

Комплекс катализатора может быть получен следующим образом: первая стадия при получении катализатора представляет собой синтез комплекса Ru-N-лиганд. Это может быть проделано путем приведения пригодного для использования источника Ru(0), например, трирутений додекакарбонила, в контакт c N-гетероциклическим лигандом. Альтернативно, трирутений додекакарбонил может быть заменен другими легко доступными производными карбонила рутения, такими как полимер рутений дикарбонил ацетата и димер рутений (II) трикарбонил дихлорида. Дополнительные альтернативы включают в себя использование менее дорогих источников рутения, которые, в атмосфере синтетического газа, будут in-situ формировать частицы карбонила рутения. Эти менее дорогие источники рутения могут включать в себя оксид рутения (IV), гидрат, хлорид рутения (III) и рутений на угле.

Условия, при которых эти соединения получают возможность для формирования комплекса, не являются критичными. Температура и давление могут изменяться в пределах, приведенных ниже, по отношению к реакции гидроформилирования, например, от 25 до 150°C. В качестве атмосферы, во время формирования комплекса, может быть использован синтетический газ. Предпочтительным является использование растворителя, предпочтительно, растворителя, используемого при реакции гидроформилирования. Очевидно, этот растворитель должен быть способным к растворению активного катализатора, без какого-либо влияния на его свойства. Пригодные для использования растворители включают в себя простые эфиры, описанные ниже, для использования в процессе гидроформилирования, в частности, простые циклические и алифатические эфиры.

Рутений-N-гетероциклический лиганд может, например, быть получен путем взаимодействия трирутений додекакарбонила c стехиометрическим количеством выбранного N-гетероциклического лиганда в растворителе, при температуре в пределах от 25 до 150°C, лучше, от 100 до 110°C, в атмосфере моноокиси углерода или синтетического газа, в течение 1-24 часов (то есть до завершения). В этот момент, указанный рутений-N-гетероциклический комплекс, необязательно, может быть выделен в виде материала, состоящего из отдельных частиц.

Затем комплекс Ru-N-гетероциклический лиганд приводится в контакт c пригодным для использования соединением карбонила кобальта, посредством окислительно-восстановительной реакции, для формирования комплекса Ru-Co-N-лиганд, опять же, при указанных выше (некритичных) условиях. Пригодный для использования источник кобальта представляет собой октакарбонил дикобальт, но могут быть использованы также и другие комплексы и соли кобальта. Например, выбранный карбонил кобальта, и необязательные промоторы, если они присутствуют, добавляют к раствору, который затем выдерживается при повышенной температуре (от 25 до 150°C), в течение времени от 15 минут до 24 часов. Это способ упоминается как постадийный способ получения. Опять же, необязательно, новый кобальт-рутений-N-гетероциклический комплекс может быть выделен и характеризован.

Также настоящее изобретение относится к получению кобальт-рутений-N-гетероциклического комплекса путем одностадийного способа, где все компоненты катализатора сводятся вместе, в одно и то же время. Например, катализатор может быть получен с помощью постадийного способа, где все компоненты сводятся вместе, в одно и то же время, при условиях использования синтетического газа. Кобальт-рутений-N-гетероциклические комплексы могут образовываться путем одностадийного способа, когда они соллюбилизируются в пригодном для использования растворителе на основе простого эфира, при условиях присутствия синтетического газа, но условия, и, в частности, растворитель, выбираются, таким образом, чтобы они способствовали формированию скорее частиц лигированного рутения, чем частиц лигированного кобальта. Присутствие скорее Ru-лигированных частиц, чем Co-лигированных частиц, может быть подтверждено, например, путем ИК анализа. Как правило, независимо от того образуется ли указанный активный Co-Ru-N-гетероциклический катализатор постадийно, или одностадийно, он демонстрирует характерные ИК полосы в диапазоне связи металл-карбонил, в частности, сильную полосу карбонила кобальта в диапазоне 1875 до 1900 см-1, связанную с анионом [Co(CO)4], плюс серию из трех или четырех рутений-карбонильных полос в диапазоне от 1900 до 2100 см-1, связанных, как предполагается, с катионными частицами карбонила рутения. Типичные спектры для системы Co-Ru-TPTZ катализаторов в 1,3-диоксолане как во время получения указанного катализатора, так и во время взаимодействия EO/синтетический газ, для получения 1,3-PDO, иллюстрируются на прилагаемых фиг.1-4.

Оптимальное отношение оксирана, вводимого в комплекс Ru-Co-N-лиганд, будет, частично, зависеть от конкретного используемого комплекса. Однако молярные отношения оксирана к кобальту в комплексе Ru-Co-N-лиганд от 2:1 до 10000:1 являются, как правило, удовлетворительными, при этом молярные отношения от 50:1 до 500:1 являются предпочтительными.

Реакционный растворитель должен быть инертным, что означает, что он не потребляется в ходе реакции. Идеальные растворители для способа по настоящему изобретению будут соллюбилизировать, в ходе реакции, вводимые исходные вещества и продукты, но дают возможность для разделения фаз при пониженных температурах. Пригодные для использования растворители описываются в US-A-5304691. Хорошие результаты могут быть получены с помощью простых эфиров, в частности простых циклических, алифатических эфиров, необязательно, в сочетании со спиртом, таким как этанол или трет-бутанол, и/или ароматическим углеводородом, таким как толуол и хлорбензолы.

Суммарные данные в таблицах 1 и 2 иллюстрируют важные преимущества, связанные с выходом и селективностью, от использования определенных растворителей на основе простых циклических эфиров, таких, например, как, но, не ограничиваясь этим, 1,3-диоксолан с пятичленным кольцом, 1,3-диоксан с шестичленным кольцом и 1,4-диоксан (см. примеры 1-16), по сравнению с простым нециклическим эфиром, таким как простой метил трет-бутиловый эфир (MTBE, см. пример 17). 1,3-диоксан представляет особенный интерес, поскольку он легко генерируется путем конденсации 1,3-PDO вместе c формальдегидом. 2-Этил-2-метил-1,3-диоксолан, как показано, представляет собой особенно интересный выбор растворителя, поскольку он дает возможность для экстракции фазы продукта PDO при нормальных рабочих условиях (см. пример 16). Здесь PDO концентрируется в фазе, обогащенной PDO, при концентрации примерно 36%. Полученный выход 1,3-PDO составляет 58% молярных, и селективность по отношению к PDO составляет 54-73%.

Могут быть использованы промоторы. Пригодные для использования промоторы описываются в US-A-5304691, цитированном ранее. Примеры промоторов, которые хорошо работают, являются легко доступными и демонстрируют способствование преобразованию EO, представляют собой третичные амины, такие как N,N-диметилдодециламин и триэтиламин, а также щелочные соли, такие как ацетат натрия.

Для получения наилучших результатов, одностадийное гидроформилирование/гидрирование осуществляется при условиях повышенной температуры и давления. Температуры реакции находятся в пределах от 30 до 150°C, предпочтительно, от 50 до 125°C, и наиболее предпочтительно, от 60 до 110°C.

Давление реакции (общее давление или парциальное давление, если используются инертные газообразные разбавители) должно составлять, по меньшей мере, 100 фунт/кв.дюйм (690 кПа). Соответствующее рабочее давление находится в пределах от 100 фунт/кв.дюйм (690 кПа) до 4000 фунт/кв.дюйм (27580 кПа), предпочтительно, от 1500 фунт/кв.дюйм (10340 кПа) до 2500 фунт/кв.дюйм (17240 кПа), а наиболее предпочтительно, составляет 2000 фунт/кв.дюйм (13790 кПа) ± 250 фунт/кв.дюйм (1725 кПа). В загрузочном способе, реакция, как правило, завершается в пределах от 1,5 до 5 часов.

Компоненты из входных потоков приводятся в контакт, в пригодном для использования реакционном растворителе, в присутствии каталитического комплекса по настоящему изобретению. Предпочтительно EO будет поддерживаться, во время реакции, при концентрации, не меньшей, чем 0,2% массового, как правило, в пределах от 0,2 до 20% массовых, предпочтительно, 1 до 10% массовых, по отношению к общей массе реакционной смеси. Способ по настоящему изобретению может осуществляться в непрерывном режиме, при этом поддерживая указанную концентрацию EO, например, путем добавления EO, распределенного по времени.

При завершении реакции гидроформилирования смесь продуктов извлекается с помощью обычных способов, таких как селективная экстракция, фракционная дистилляция, разделение фазы и селективная кристаллизация. Непрореагировавшие исходные материалы, а также катализатор и реакционный растворитель, могут рециклироваться, и предпочтительно рециклируются, для дальнейшего использования.

Распределению реакционной смеси может способствовать добавление вещества, индуцирующего разделение фаз. Пригодные для использования вещества включают в себя гликоли, такие как этиленгликоль, и линейные алканы, такие как додекан. Такое вещество должно добавляться к реакционной смеси в количестве, находящемся в пределах от 2 до 10% массовых, предпочтительно, от 4 до 8% массовых, по отношению к реакционной смеси в целом. Альтернативные способы включают в себя добавление 1,3-пропандиола в реакционную смесь, для доведения концентрации продукта до целевой пропорции. В дополнение к этому препятствующие смешиванию спирты и вещества с подобной же полярностью, такие как этанол, пропанол и изопропанол, могут добавляться изначально, а затем удаляться, перед последующим индуцированием разделения фаз.

В промышленном масштабе требуется эффективное извлечение катализатора с множеством циклов по существу полного рециклирования катализатора в реакцию. Предпочтительный способ извлечения катализатора включает в себя разделение смеси на две жидких фазы, указанных ранее, и рециклирование объемной фазы растворителя в реактор, и возвращение в него, по меньшей мере, от 60 до 90% массовых исходного катализатора.

В предпочтительном режиме осуществления способа условия реакции, такие как концентрация оксирана, концентрация катализатора, растворитель, концентрация продукта, температура реакции и тому подобное, выбираются таким образом, чтобы получить гомогенную реакционную смесь при повышенных температурах и вызвать разделение реакционной смеси на верхнюю фазу растворителя, содержащую большую часть катализатора, и нижнюю фазу, содержащую большую часть 1,3-пропандиола, при охлаждении смеси. Такое разделение облегчает выделение и извлечение продукта, рециклирование катализатора и удаление тяжелых побочных продуктов из системы растворителя. Этот способ упоминается как способ рецикла катализатора/извлечения продукта путем разделения фаз.

В этом способе содержимому реактора дается возможность для осаждения или его переносят в соответствующую емкость при давлениях, находящихся в пределах от атмосферного давления до давления вблизи давления реакции, где при небольшом или значительном охлаждении могут формироваться различные фазы, которые являются существенно различными, будучи значительно обогащенными продуктом или катализатором и растворителем. Фаза, обогащенная катализатором и растворителем, непосредственно рециклируется для дальнейшего взаимодействия с вводимыми исходными материалами. Продукт извлекается из фазы, обогащенной продуктом, с помощью обычных способов.

Является предпочтительным, чтобы реакция протекала таким образом, чтобы концентрация продукта диола в реакционной смеси поддерживалась на уровнях, соответствующих разделению фаз. Например, концентрация 1,3-пропандиола может находиться в пределах между менее чем 1 и менее чем 50% массовых, как правило, в пределах между 8 и 32% массовых, а предпочтительно, между 16 и 20% массовых. Температура во время спокойного осаждения фаз может находиться в пределах между температурой чуть выше точки замерзания реакционной смеси и температурой, по меньшей мере, равной 150°C, а может быть более высокой, как правило, между 27 и 97°C, а предпочтительно, между 37 и 47°C. Поддерживается такая концентрация EO, чтобы избежать образования легких спиртов и альдегидов, которые являются веществами, препятствующими смешиванию. Оксираны, предпочтительно, поддерживаются, во время реакции, при концентрации, не меньшей, чем 0,2% массового, как правило, в пределах от 0,2 до 20% массовых, предпочтительно, от 1 до 10% массовых, по отношению к общей массе реакции. Реакция может осуществляться с помощью двухфазной системы. Однако значения выхода и селективности доводятся до максимума тогда, когда в однофазной реакции присутствуют высокие концентрации продукта, и последующее разделение фаз осуществляется при охлаждении.

Хорошо работают препараты, содержащие как бидентатные, так и мультидентатные лиганды. Хорошие результаты демонстрируются c помощью биметаллических катализаторов на основе кобальта-рутения в сочетании c разнообразными бидентатными N-гетероциклическими лигандами, когда они соллюбилизируются в соответствующих растворителях на основе простых эфиров. Предшественники катализаторов кобальт-рутений-2,2′-бипиримидина и 2,2′-дипиридила являются особенно эффективными (см., например, данные в таблицах 1 и 2).

Хорошие результаты получают также c помощью мультидентатных N-гетероциклических лигандов, например, используя предшественник катализатора кобальт-рутений-2,4,6-трипиридил-втор-триазина (TPTZ), в растворителях на основе простых циклических эфиров, таких как 1,3-диоксолан, 1,3-диоксан, 1,4-диоксан и 2-этил-2-метил-1,3-диоксолан (опять же, см. данные в таблице 1).

Инфракрасные исследования in-situ катализатора на основе кобальт-рутений-2,4,6-трипиридил-втор-триазина в 1,3-диоксолане (пример 58, таблица 10), демонстрируют формирование четырех характерных полос в металл-карбонильном диапазоне при 1888, 1950, 1986, и 2015 см-1, во время предварительного формирования активных частиц при 90°C, в атмосфере синтетического газа (CO/H2, 1:4). После добавления этиленоксида реакционная смесь, опять при 90°C, под давлением синтетического газа, продолжает демонстрировать сильную полосу при 1888-см-1, плюс дополнительные полосы при 1950, 1984, 2015 и 2048 см-1. Эта структура полос сохраняется и во время образования 1,3-пропандиола. Типичные ИК спектры, плюс их трехмерные графики представлены на фиг.1-4.

Следующие далее примеры будут служить для иллюстрации настоящего изобретения, описываемого здесь. Эти примеры предназначены только в качестве иллюстрации и не должны рассматриваться как ограничивающие рамки настоящего изобретения каким-либо образом. Для специалиста в данной области техники станет ясно, что имеется множество вариантов осуществления изобретения без отклонения от заявленного объема притязаний.

Примеры 1-20

Примеры 1-20 осуществляют в системе реакторов Парра емкостью 300 см3, интегрированных в коллектор синтетического газа. В примерах 1-12 N-гетероциклический лиганд изменяется, но используются только два растворителя на основе простых циклических эфиров. В примерах 13-20, изменяется растворитель. Отмечаются изменения в других компонентах и условиях. Данные приведены в таблицах 1 и 2.

Как рассматривалось ранее, особенно хорошие результаты демонстрируются с использованием 2,2′-дипиридила (DIPY), 2,2′-бипиримидина (BPYM) и 2,4,6-трипиридил-втор-триазина (TPTZ). Суммарные данные для использования этих трех N-гетероциклов, плюс 1,10-фенантролина (PHEN), при одностадийном синтезе PDO представлены в таблице 1. Здесь значение выхода PDO вычисляют в виде молярных отношений, по отношению к количеству загруженного этиленоксида, в то время как значения селективности по отношению к PDO оценивают с помощью газохроматографического анализа (ГХ) фракций сырого продукта. Первичные продукты побочных реакций включают в себя этанол (главная фракция сопродукта), промежуточное вещество HPA, ацетальдегид и малое количество тяжелых побочных продуктов, которые включают в себя простой 3-гидроксипропил-2-гидроксиэтиловый эфир, 3-гидроксипропил 3-гидроксипропионат и сложный PDO/EG эфир 3-гидроксипропионата (все подтверждаются с помощью ГХ-МС/ИК). Промотор представляет собой N,N-диметилдодециламин (Me2C12N). В таблице 1, пример 1, осуществляемый при 90°C, при давлении 1800 фунт/кв.дюйм (12410 кПа) синтетического газа 1/2(CO/H2), выход 1,3-PDO составляет 49% молярных, по отношению к загруженному EO, отношение продуктов PDO/HPA составляет 26, и отношение 1,3-PDO/EtOH равно 9. Концентрация ацетальдегида в жидком сыром продукте составляет только 0,3%. В первом примере Co-Ru-DIPY (см. пример 2, таблица 1), осуществляемом при 90°C, при давлении синтетического газа 1/4 (CO/H2) 2000 фунт/кв.дюйм (13790 кПа), молярный выход 1,3-PDO составляет 54%, оцененное массовое отношение PDO/этанол составляет 13, отношение PDO/HPA равно примерно 2,8, и концентрация ацетальдегида в жидком сыром продукте составляет 0,8%. Общий молярный выход PDO, плюс HPA составляет примерно 74%, в то время как темно-пурпурный раствор продукта не демонстрирует каких-либо признаков осаждения, и реактор чист. Многократные добавления этиленоксида (как в примере 5) увеличивают выход PDO до 66% молярных, и здесь отношение PDO/HPA в конечном продукте составляет >100.

При использовании TPTZ в качестве добавляемого N-гетероцикла гидрирование промежуточного вещества HPA является близким к количественному, и в обоих примерах 7 и 8 отношение PDO/HPA составляет >100. Значения выхода 1,3-PDO, как правило, составляют 57-59% молярных. При использовании 1,4-диоксана в качестве растворителя, как в примере 8, отношение 1,3-PDO/EtOH равно 7, и ацетальдегид делает его также меньшим, чем 0,1%. На основе ИК исследований in-situ авторы не видят никаких доказательств осаждения, при использовании этого N-гетероцикла, ни во время стадии приготовления катализатора Co-Ru-TPTZ, ни в фазе генерирования PDO. Распределения продуктов опять подтверждаются с помощью ГХ-МС/ИК.

Главным преимуществом при использовании 2,2′-дипиридила является то, что он является коммерчески доступным, например, от Zeneca Corporation или Sigma-Aldrich. Образец DIPY (чистота 97%) от Zeneca Corporation (см. пример 9, таблицу 1, отношение PDO/HPA равно 6,6, отношение PDO/EtOH равно 14) имеет характеристики, подобные оригинальным образцам авторов, от Aldrich. Дополнительная очистка материала Zeneca посредством перекристаллизации в гексане (т.пл. 69-71°C) имеет только незначительное воздействие, при ее осуществлении, в процессе получения PDO (см. пример 10, отношение PDO/HPA опять равно 6,6). Второе улучшение по стоимости может быть реализовано путем использования диоксида рутения, гидрата, в качестве источника рутения, и генерации предшественников карбонила рутения in-situ (пример 11) путем предварительной обработки при 160°C, c помощью газа, обогащенного CO, после этого значения молярного выхода PDO+HPA составляют >65%, отношение PDO/EtOH равно 15 и концентрация ацетальдегида равна 0,5%. Другая возможность представляет собой использование рутения на угле (пример 12, от Alfa), хотя здесь жидкий продукт супернатанта, как правило, демонстрирует примерно 910 м.д. рутения.

Таблица 1
Пример Композиция катализатора Co:Ru:N Растворитель Ме2С12N Условия PDO селективность (%) Выход PDO (% моляр.)
1 Со2(СО)8-Ru3(CO)12-BPYM 2:1:2 1,3-диоксолан Нет a 61 49
2 Со2(СО)8-Ru3(CO)12-DIPY 1:1:2 Да b 61 54
3 1:1:2 Да, с b 56 51
4 1:1:3 Да b 69 57
5 1:1:2 Да, с b, d 74 66
6 Со2(СО)8-Ru3(CO)12-PHEN Да b 38 29
7 Со2(СО)8-Ru3(CO)12-TPTZ 1:1:e,f Да, с b 71 57
8 1:1:е 1,4-диоксан Да b 76 59
9 Со2(СО)8-Ru3(CO)12-DIPY,g 1:1:2 1,3-диоксолан Да, с b 70 53
10 “, h Да, с b 69 56
11 Со2(СО)8-RuO2
DIPY
Да, с b 70 55
12 Со2(СО)8-10% Ru/C-DIPY Да, с b 71 55
a. Условия опыта: 90°С 1800 фунт/кв.дюйм (12410 кПа), 1/2 (CO/H2),
b. Условия опыта: 90°C, 2000 фунт/кв.дюйм (13790 кПа), 1/4 (CO/H2)
c. Удвоенная концентрация промотора
d. Масштабирование процесса, осуществляется в реакторе периодического действия емкостью 300 см3, четыре добавления этиленоксида
e. Отношение равно 1:1:1, Co:Ru:TPTZ
f. Удвоенная концентрация катализатора
g. DIPY от Zeneca Corp.
h. DIPY от Zeneca, перекристаллизованный из гексана

Таблица 2
Пример Композиция катали-затора Co:Ru:N Раствори-тель Ме2С12N Условия PDO селек-тивность (%) Выход PDO (% моляр.)
5 Со2(СО)8-Ru3(CO)12-DIPY 1:1:2 1,3-диоксолан Да a 74 66
13 “, b 1,3-диоксан, с Да а 67 54
14 “, b 1,3-диоксан, с, d Да а 72 63
15 “, b 1,4-диоксан Да а 71 47
16 2-этил-2-метил-1,3-диоксолан Да е 54-73, f 58
17 МТВЕ Да а 36 21
18 2:1:2 ТГФ Да g Н.О. 4,5
19 1:1:2 N-(Ме2-N-этил)мор-фолин Да a Н.О. <1
20 сульфолан Да а 37 14
a. Условия опыта: 90°C, 1800 фунт/кв.дюйм (12410 кПа), 1/2 (CO/H2)
b. Концентрация катализатора увеличивается в 1,5 раза
c. 1,3-Диоксан, от Ferro Corporation
d. Загрузка большей массы, чистота 99,8%
e. Условия опыта: 100°C, 2000 фунт/кв.дюйм (13790 кПа), 1/4 (CO/H2)
f.Жидкость с двухфазным продуктом, PDO концентрируется в более тяжелой фазе
g. Условия опыта: 90°C, 1500. фунт/кв.дюйм (10340 кПа), 1/2 (CO/H2)

Пример 21

В примере 21, осуществляются типичные исследования жизнеспособности каталитического комплекса. Катализатор дикобальт октакарбонил-трирутений додекакарбонил-2,2′-дипиридил, соллюбилизированный в 1,3-диоксолане, используют в качестве предшественника катализатора для восемнадцати добавлений EO и четырех отгонок PDO. Здесь начальная стехиометрия Co-Ru-DIPY составляет 1:1:1, и каждое гидроформилирование EO осуществляется при 90°C, при давлении 2000 фунт/кв.дюйм (13790 кПа) синтетического газа 1/4 (CO/H2). Типичными рабочими методиками являются следующие.

1. Четыре добавления EO к Co-Ru-N-гетероциклическому катализатору, соллюбилизированному в растворителе на основе простого циклического эфира, при гидроформилировании/ гидрировании каждой добавки EO до PDO, как подробно описано ранее.

2. Извлечение PDO с помощью вакуумной перегонки после отделения растворителя.

3. Рециклирование Co-Ru-N-гетероциклического катализатора из нижней части раствора в PDO вместе со свежим растворителем на основе простого эфира.

Данные приведены в таблице 3.

Таблица 3
#
Добавление EO
Выход PDO (молярн. %) PDO (%) селектив. PDO/EtOH Перегнанный PDO (г)
4 66 74 5,0 15
4 49 73 6,8 38
4 52 67 7,9 49
4 69 57 5,8 31
2 52 44 11,3 Н.О.

В целом обнаружено, что с увеличением количества циклов медленно возрастает количество органических тяжелых побочных продуктов, в частности, простого 3-гидроксипропил-2-гидроксиэтилового эфира, 3-гидроксипропил 3-гидроксипропионата и сложных PDO/EG эфиров 3-гидроксипропионата (идентифицируется с помощью ГХ-МС/ИК). При постоянном отборе жидкости система обедняется также и катализатором, так что время завершения каждого поглощения EO растягивается от 4 до 9 часов. Все растворы продуктов демонстрируют очень небольшие остаточные количества HPA (<1%), и концентрации ацетальдегида на выходе никогда не превышают 0,4%. После 18 добавлений EO конечный продукт представляет собой прозрачную жидкость глубокого красного цвета, без каких-либо признаков осаждения. Величины извлечения кобальта и рутения составляют 68% и 64% соответственно на основе анализов металлов (флуоресценция рентгеновских лучей). Подобным же образом инспекция реактора после 5 недель работы показывает, что он чист, без каких-либо остатков твердых продуктов.

Пример 22

Осуществляется ряд экспериментов, очень сходных с теми, что в примере 21, где промежуточные твердые продукты, формирующиеся во время процесса многократного циклирования, удаляются путем фильтрования (перед перегонкой PDO) и после 18 добавлений EO, добавляют небольшое количество свежего катализатора. Завершают четыре дополнительных добавления EO, что в целом составляет 22. Время поглощения EO для этого второго исследования времени жизни катализатора иллюстрируется на фиг. 5.

Примеры 23-98

Ряд гомогенных катализаторов на основе кобальта-рутения, в сочетании с некоторым количеством N-гетероциклических лигандов, используются для одностадийного синтеза 1,3-PDO, с использованием различных молярных отношений компонентов каталитического комплекса, различных растворителей и некоторого набора условий реакций. Эти процессы осуществляют в загрузочных реакторах емкостью 100 см3, подвешенных к коллектору синтетического газа и имеющих соответствующие датчики и средства контроля температуры/давления. Эти данные иллюстрируют использование:

– Ряда N-гетероциклических лигандов, включающих в себя 2,2′-бипиримидин (BPYM), 2,2′-дипиридил (DIPY), 2,4,6-трипиридил-втор-триазин (TPTZ), 1,10-фенантролин, 2,2′-бихинолин, 2,2′-дипиридиламин, ди-2-пиридил кетон, 4,7-диметилфенантролин, 5,6-диметилфенантролин, пиримидин, пиридазин, хиназолин, неокупроин, 3,6-ди-2-пиридил-1,2,4,5-тетразин, 2,2′:6′,2″-терпиридин и 3-(2-пиридил)-5,6-дифенил-1,2,4-триазин.

– Ряда предшественников на основе рутения, включающих в себя трирутений додекакарбонил, рутений (IV) оксид и 10% рутений на угле.

– Набора растворителей на основе простых эфиров, включающих в себя MTBE, тетрагидрофуран (ТГФ), 1,3-диоксолан, 1,4-диоксолан, диметил-1,3-диоксолан, 4-метил-1,3-диоксолан, 2-этил-2-метил-диоксолан и 1,4-диоксан.

– Промоторов, включающих в себя триэтиламин и N,N-диметилдодециламин, а также ацетат натрия.

Экспериментальные данные собраны вместе в следующих далее таблицах 4-19, для этого прямого, одностадийного преобразования этиленоксида плюс синтетический газ, в 1,3-пропандиол. В колонке Фаз продуктов, T представляет собой верхнюю фазу, B представляет собой нижнюю фазу, P представляет собой продукт в целом, когда присутствует только одна фаза, и W/W представляет собой водную промывку.

Формула изобретения

1. Композиция катализатора для одностадийного способа получения 1,3-пропандиола, содержащая

a) компонент кобальта, включающий в себя одно или несколько нелигированных соединений карбонила кобальта; и

b) компонент рутения, включающий в себя соединение карбонила рутения, лигированное N-гетероциклическим лигандом, выбранным из группы, состоящей из бидентатных и мультидентатных N-гетероциклических лигандов.

2. Композиция по п.1, где N-гетероциклический лиганд представляет собой диазин или бензодиазин.

3. Композиция по п.2, где N-гетероциклическое соединение выбирается из группы, состоящей из пиримидина, пиразина, пиридазина, хиназолина и хиноксалина.

4. Композиция по п.1, где N-гетероциклическое соединение представляет собой биспиридин.

5. Композиция по п.4, где N-гетероциклическое соединение выбирается из группы, состоящей из 2,2′-дипиридила (DIPY), 2,2′-бипиримидина (BPYM), 1,10-фенантролина (PHEN), ди-2-пиридил кетона, 4,4′-диметил-2,2′-дипиридила, 5,6-диметилфенантролина, 4,7-диметилфенантролина, 2,2′-бихинолина, неокупроина и 2,2′-дипиридиламина.

6. Композиция по п.1, где N-гетероциклическое соединение представляет собой мультипиридин.

7. Композиция по п.6, где N-гетероциклическое соединение выбирается из группы, состоящей из 2,4,6-трипиридил-втор-триазина (TPTZ), 3,6-ди-2-пиридил-1,2,4,5-тетразина, 2,2′:6′, 2″-терпиридина, 2,3-бис(пиридил)пиразина и 3-(2-пиридил)-5,6-дифенил-1,2,4-триазина.

8. Способ получения 1,3-пропандиола, включающий в себя стадии

(a) контактирование, в реакционной смеси, этиленоксида, моноокиси углерода, водорода, при молярном соотношении водорода к моноокиси углерода в диапазоне от 1:1 до 8:1, инертного реакционно растворителя, содержащего простой эфир, и композиции катализатора, содержащей

(i) одно или несколько нелигированных соединений карбонила кобальта; и

(ii) соединение карбонила рутения, лигированное N-гетероциклическим лигандом, выбранным из группы, состоящей из бидентатных и мультидентатных N-гетероциклических лигандов; и

(b) нагревания указанной смеси до температуры от 30 до 150°С и давления от 100 до 4000 фунт/кв.дюйм (от 690 до 27580 кПа), в течение времени, эффективного для получения двухфазной смеси реакционных продуктов, содержащих верхнюю фазу, содержащую основную часть растворителя, по меньшей мере, 50% массовых композиции катализатора, плюс непрореагировавший этиленоксид, и нижнюю фазу, которая содержит основную часть 1,3-пропандиола.

РИСУНКИ


QB4A – Регистрация лицензионного договора на использование изобретения

Лицензиар(ы): ШЕЛЛ ИНТЕРНЭШНЛ РИСЕРЧ МААТСХАППИЙ Б.В. (NL)

Вид лицензии*: НИЛ

Лицензиат(ы): ШЕЛЛ РИСЕЧ ЛИМИТИД (GB)

Договор № РД0044384 зарегистрирован 09.12.2008

Извещение опубликовано: 20.01.2009 БИ: 02/2009

* ИЛ – исключительная лицензия НИЛ – неисключительная лицензия


Categories: BD_2297000-2297999