Патент на изобретение №2296176
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ
(57) Реферат:
Изобретение относится к области металлургии сплавов на основе алюминия системы Al-Mg-Li-Cu, используемых в качестве конструкционного материала для авиакосмической техники и транспортного машиностроения в виде обшивки и внутреннего силового набора. Сплав содержит следующие компоненты, мас.%: литий 1,5-1,9, магний 1,2-3,5, медь 1,4-1,8, цинк 0,01-1,2, марганец 0,01-0,8, титан 0,01-0,25, кремний 0,005-0,8, церий 0,005-0,4, по крайней мере один элемент, выбранный из группы, включающей: скандий 0,01-0,3, цирконий 0,03-0,15, бериллий 0,001-0,2, алюминий остальное. Способ термической обработки данного сплава включает закалку, правку и искусственное старение по трехступенчатому режиму. Закалку производят с температуры 510-535°С. Первую ступень искусственного старения проводят при температуре 95-120°С. В частных воплощениях изобретения вторую ступень старения проводят при температуре 130-180°С в течение 3-25 ч, а третью ступень искусственного старения проводят при температуре 95-120°С в течение времени не менее 15 ч. Техническим результатом изобретения является разработка сплава и способа его термической обработки, позволяющих повысить прочность и термическую стабильность после нагрева при температуре 85°С в течение 1000 ч при сохранении высокой вязкости разрушения и технологической пластичности сплава при получении тонких листов методом рулонной прокатки. 2 н. и 1 з.п. ф-лы, 4 табл.
Изобретение относится к области металлургии сплавов на основе алюминия системы Al-Mg-Li-Cu, используемых в качестве конструкционного материала для авиакосмической техники и транспортного машиностроения в виде обшивки и внутреннего силового набора. Известны алюминиевые сплавы системы Al-Li-Mg-Zn, которые характеризуются пониженной плотностью и относительно высокой прочностью. Например, сплав следующего химического состава (мас.%):
Сплав упрочняется термической обработкой – закалка с температуры 460°С, правка растяжением со степенью деформации 0-3% и двухступенчатое старение: 1-я ступень при 90°С, 16 ч и 2-я ступень при 150°С, 24 ч. Этот сплав обладает достаточно высоким уровнем предела прочности 440-550 МПа и предела текучести 350-410 МПа. Недостатком сплава является низкий уровень относительного удлинения в термоупрочненном состоянии (1,0-7,0%), вязкости разрушения и технологичности при холодной деформации в процессе изготовления тонких листов, которые являются одними из основных конструктивных материалов для летательных аппаратов. Известен сплав следующего химического состава (мас.%):
по крайней мере, один элемент из группы, содержащей:
Этот сплав обладает пределом прочности 450-475 МПа и пределом текучести 330-360 МПа, относительным удлинением 8-10%. Вязкость разрушения листов из этого сплава после длительных солнечных нагревов (при 85°С, 1000 ч) не меняется (КС У=65-69 МПам). Недостатком этого сплава является невысокая технологическая пластичность при холодной прокатке, так как отжиг не приводит к достаточному разупрочнению из-за высокого содержания магния. Это делает практически невозможным рулонную холодную прокатку тонких листов. Наиболее близким по технической сущности и достигаемому эффекту является сплав следующего химического состава (мас.%):
по крайней мере, один элемент из группы, содержащей:
Этот сплав обладает достаточной технологической пластичностью в отожженном состоянии, которая необходима при получении тонких листов методом рулонной прокатки. Недостатком этого сплава является пониженные значения предела прочности (410 МПа) и предела текучести (305 МПа) и недостаточная термическая стабильность после нагревов при температуре 85°С до 1000 ч. Известен способ термической обработки, включающий закалку с быстрым охлаждением, правку и двухступенчатое старение по режиму: 1-ая ступень при температуре 93°С, от нескольких часов до нескольких месяцев; предпочтительно 66-85°С, не менее 24 ч; 2-ая ступень при температуре не выше 219°С, от 30 минут до нескольких часов; предпочтительно, 154-199°С, не менее 8 ч (патент США № 4861391). Повышая прочностные характеристики и вязкость разрушения, этот способ не обеспечивает стабильности свойств алюминиевых сплавов с литием после низкотемпературного нагрева при температуре 85°С в течение 1000 ч, который имитирует солнечный нагрев при длительной эксплуатации летательных аппаратов. После нагрева 85°С – 1000 ч относительное удлинение и вязкость разрушения сплавов с литием, обработанных по этому способу, снижаются на 25-30%. Из известных режимов упрочняющей термической обработки наиболее близким к заявляемому является способ термической обработки, включающий закалку с температуры 400-500°С в холодной воде или на воздухе, правку растяжением со степенью деформации 0-2% и трехступенчатое искусственное старение по режиму: 1-я ступень при температуре 80-90°С в течение 3-12 ч; 2-я ступень при температуре 110-185°С, в течение 10-48 4, 3-я ступень при температуре 90-110°С, в течение 8-14 ч (патент РФ № 2133295). Этот способ термической обработки обеспечивает достаточно высокий уровень прочности и высокую термическую стабильность после длительных низкотемпературных нагревов. Однако при этом получен невысокий уровень относительного удлинения. Технической задачей изобретения является разработка сплава на основе алюминия системы Al-Mg-Li-Cu и способа его термической обработки, позволяющих повысить прочность и термическую стабильность после нагрева при температуре 85°С в течение 1000 ч при сохранении высокой вязкости разрушения и технологической пластичности сплава при получении тонких листов методом рулонной прокатки. Для решения поставленной задачи предлагается сплав на основе алюминия системы Al-Mg-Li-Cu, содержащий литий, магний, медь, цинк, марганец и титан, отличающийся тем, что сплав дополнительно содержит кремний, церий и, по крайней мере, один элемент из группы, включающей скандий, цирконий и бериллий при следующем соотношении компонентов (мас.%):
по крайней мере, один элемент, выбранный из группы, включающей:
и способ термической обработки, включающий закалку с температуры 510-535°С в холодной воде, правку и трехступенчатое старение: 1-я ступень при температуре 95-120°С в течение времени, достаточном для обеспечения максимальной плотности выделений дисперсных частиц основной упрочняющей ‘-фазы, 2-я ступень при температуре 130-180°С в течение 3-25 ч и 3-я ступень при температуре 95-120°С в течение времени не менее 15 ч. Содержание магния в сплаве в пределах 1,2-3,5% обеспечивает высокий уровень прочностных свойств за счет твердорастворного упрочнения. При уменьшении содержания магния менее 1,2% снижается прочность и возрастает склонность сплава к горячим трещинам при литье. При увеличении концентрации магния в сплаве более 3,5% снижается технологичность при холодной прокатке, а также пластические характеристики готовых полуфабрикатов и изделий из них. Дополнительное введение кремния приводит к образованию большого количества дисперсных частиц Mg2Si, a также четверной фазы с медью Al5Si6Mg8Cu2. Это способствует измельчению зеренной структуры за счет увеличения центров рекристаллизации и повышению прочности и вязкости разрушения. Дополнительное введение церия облагораживает форму избыточных интерметаллидов, содержащих марганец, что приводит к повышению как технологической пластичности при холодной деформации, так и пластичности в термоупрочненном состоянии. Введение хотя бы одного элементов из группы скандий, цирконий и бериллий способствует формированию однородной мелкозернистой структуры в слитках и повышению технологической пластичности при холодной прокатке. Увеличение температуры нагрева под закалку до 510-535°С в предлагаемом способе термической обработки обеспечивает наибольшее пересыщение твердого раствора литием за счет более полного растворения избыточных фаз. Повышение температуры старения на 1-й ступени до 95-120°С ускоряет распад твердого раствора с выделением дисперсной упрочняющей ‘ (Al3Li) – фазы и обеспечивает их максимальную плотность. Этим самым предотвращается выделение стабильных фаз и образование приграничных зон, свободных от выделений, при старении на 2-й ступени при более высокой температуре 130-180°С. Такое структурное состояние сплава приводит к одновременному повышению прочности, пластичности и вязкости разрушения. С увеличением времени старения на третьей ступени не только повышается термическая стабильность сплава, но и увеличиваются прочностные свойства сплава за счет дополнительного выделения дисперсной фазы ‘ (Al3Li), равномерно распределенной в объеме матрицы. Таким образом, технический результат достигается при заявленных количественном и качественном соотношении компонентов в предлагаемом сплаве и режиме термической обработки. Пример осуществления Из сплавов, химический состав которых приведен в табл.1, отливали слитки диаметром 70 мм. Плавка металла осуществлялась в электрической печи. После гомогенизации из слитков прессовались полосы сечением 15×65 мм. Заготовки из полос прокатывали на листы толщиной 5 мм, которые после отжига с медленным охлаждением с печью прокатывали в холодную до толщины 2,5 мм. Холоднокатаные листы подвергали закалке в воде, правке и искусственному трехступенчатому старению (табл.2). Время, достаточное для обеспечения максимальной плотности выделения основной упрочняющей ‘-фазы, для сплавов выбранных составов составило 3 ч (№№ 3, 5, 7, 9) и 12 ч (№№ 4, 6, 8, 10). Свойства в отожженном состоянии определяли на образцах, вырезанных из горячекатаных листов толщиной 5 мм (табл.3). Свойства в состаренном состоянии определяли на образцах, вырезанных из холоднокатаных листов толщиной 2,5 мм (табл.4). Предложенный состав сплава обеспечил в отожженном состоянии существенное повышение технологической пластичности за счет снижения пределов прочности и текучести, повышения относительного удлинения и снижения отношения 0,2/в (снижается в 1,5-2 раза). Полученные характеристики предложенного сплава позволяют получать тонкие листы методом холодной рулонной прокатки. Как видно из полученных результатов, предложенный состав сплава, обработанный по предложенному способу термообработки, позволил повысить в состаренном состоянии прочностные характеристики и относительное удлинение, вязкость разрушения до и после нагрева 85°С, 1000 ч. Применение заявленного сплава и способа его термической обработки в конструкциях авиакосмической техники и транспортного машиностроения позволят повысить надежность и ресурс эксплуатации с учетом длительного воздействия солнечных лучей.
Формула изобретения
1. Сплав на основе алюминия системы Al-Mg-Li-Cu, содержащий литий, магний, медь, цинк, марганец и титан, отличающийся тем, что сплав дополнительно содержит кремний, церий и по крайней мере один элемент из группы, включающей скандий, цирконий и бериллий, при следующем соотношении компонентов, мас.%:
по крайней мере один элемент, выбранный из группы, включающей
2. Способ термической обработки сплава на основе алюминия системы Al-Mg-Li-Cu, включающий закалку, правку и искусственное старение по трехступенчатому режиму, отличающийся тем, что закалку производят с температуры 510-535°С, а первую ступень искусственного старения проводят при температуре 95-120°С в течение времени, достаточного для обеспечения максимальной плотности выделений дисперсных частиц основной упрочняющей ‘ (Al3Li) фазы. 3. Способ термической обработки по п.2, отличающийся тем, что вторую ступень старения проводят при температуре 130-180°С в течение 3-25 ч, а третью ступень искусственного старения проводят при температуре 95-120°С в течение времени не менее 15 ч.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||