Патент на изобретение №2296046

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2296046 (13) C1
(51) МПК

B28B3/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.12.2010 – действует

(21), (22) Заявка: 2005132662/28, 25.10.2005

(24) Дата начала отсчета срока действия патента:

25.10.2005

(46) Опубликовано: 27.03.2007

(56) Список документов, цитированных в отчете о
поиске:
L.Ci at al. Annealing amorphous carbon nanotubes for their application in hydrogen storage. Applied Surface Science, 2003, v.205, p.39-43. US 6277318 B1, 21.08.2001. US 2002/094311 A1, 18.07.2002. WO 2004/052781 A1, 24.06.2004. RU 2200562 C2, 20.03.2003. RU 2146648 C1, 20.03.2000.

Адрес для переписки:

142432, Московская обл., г. Черноголовка, ул. Институтская, 2, ИФТТ РАН

(72) Автор(ы):

Колесников Николай Николаевич (RU),
Кведер Виталий Владимирович (RU),
Борисенко Дмитрий Николаевич (RU)

(73) Патентообладатель(и):

ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (RU)

(54) СПОСОБ ОБРАБОТКИ УГЛЕРОДНЫХ НАНОТРУБОК

(57) Реферат:

Изобретение относится к области изготовления материалов для систем хранения водорода, а также к области получения углеродных нанотрубок и может использоваться при изготовлении углеродных нанотрубок, применяемых в качестве материала-носителя в различных системах аккумулирования водорода. Сущность изобретения: способ обработки углеродных нанотрубок предусматривает нагрев при температуре 1500-1600°С в парах сульфида цинка в течение 20-30 мин. Техническим результатом изобретения является увеличение сорбционной емкости углеродных нанотрубок при одновременном снижении температуры и продолжительности процесса обработки. 1 табл.

Изобретение относится к области изготовления материалов для систем хранения водорода, а также к области получения углеродных нанотрубок и может использоваться при изготовлении углеродных нанотрубок, применяемых в качестве материала-носителя в различных системах аккумулирования водорода.

Известен способ обработки углеродных нанотрубок нагревом до 1700-2200°С в потоке аргона в течение 120 минут [L.Ci, H.Zhu, В.Wei, С.Xu, D.Wu. Annealing amorphous carbon nanotubes for their application in hydrogen storage. Applied Surface Science, 2003, v.205, p.39-43] – прототип. Способ позволяет увеличить сорбционную емкость углеродных нанотрубок по отношению к водороду в 1,26-3,09 раза в зависимости от температуры обработки. Основным недостатком способа является необходимость использования высокой температуры обработки для существенного увеличения сорбционной емкости материала. Обработка при 1700°С увеличивает адсорбционную способность только в 1,26 раза, тогда как для увеличения сорбционной емкости в 3,09 раза требуется нагрев до 2200°С. К недостаткам также следует отнести большую длительность обработки (120 минут).

Задачей настоящего изобретения является увеличение сорбционной емкости углеродных нанотрубок при одновременном снижении температуры и продолжительности процесса обработки.

Эта задача решается в предлагаемом способе обработки углеродных нанотрубок, включающем нагрев, который проводится при температуре 1500-1600°С в замкнутом объеме в парах сульфида цинка в течение 20-30 мин.

Обработка в парах сульфида цинка позволяет увеличить сорбционную емкость углеродных нанотрубок по отношению к водороду в 3,4 раза, при этом температура проведения процесса снижается до 1500-1600°С, а продолжительность обработки снижается до 20-30 минут.

Сульфид цинка имеет температуру плавления 1765°С и давление собственных паров в точке плавления свыше 4,5 атм. При нагреве сульфида цинка в твердой фазе он сублимирует; при температуре примерно 1550°С давление собственных паров составляет 1 атм. При нагреве материала выше 1600°С пары сульфида цинка интенсивно диссоциируют с образованием атомарного цинка и молекулярной серы.

Увеличение сорбционной емкости углеродных нанотрубок под воздействием паров сульфида цинка объясняется увеличением площади активной поверхности нанотрубок за счет химического взаимодействия этих материалов.

Выбор температурного интервала проведения процесса обработки обусловлен тем, что при температурах ниже 1500°С, когда давление собственных паров ZnS меньше 1 атм, сульфид цинка испаряется недостаточно интенсивно и существенного увеличения сорбционной емкости нанотрубок не достигается. При температурах выше 1600°С пары сульфида цинка интенсивно диссоциируют и углеродные нанотрубки быстро разрушаются под воздействием сильного окислителя – газообразной серы, являющейся одним из продуктов диссоциации.

При длительности процесса менее 20 мин сорбционная емкость углеродных нанотрубок не достигает максимальных значений. При увеличении продолжительности обработки свыше 30 мин сорбционная емкость сначала перестает увеличиваться, а затем начинает снижаться, что можно объяснить начинающимся разрушением нанотрубок.

По окончании процесса избыточный испарившийся сульфид цинка конденсируется на холодных стенках устройства для проведения обработки и может быть собран для повторного использования.

Режимы обработки приведены в таблице, где для сравнения также приводятся результаты обработки по способу-прототипу, взятые из [L.Ci, H.Zhu, В.Wei, С.Xu, D.Wu. Annealing amorphous carbon nanotubes for their application in hydrogen storage. Applied Surface Science, 2003, v.205, p.39-43].

Таблица
№ п/п Температура обработки, °С Время обработки, мин Сорбционная емкость необработанных нанотрубок, мас.% Сорбционная емкость обработанных нанотрубок, мас.% Увеличение сорбционной емкости Способ
1. 1700 120 1,29 1,62 в 1,26 раза прототип
2. 1900 120 1,29 2,21 в 1,71 раза прототип
3. 2000 120 1,29 2,34 В 1,81 раза прототип
4. 2200 120 1,29 3,98 в 3,09 раза прототип
5. 1480 25 1,2 3,2 в 2,7 раза предлагаемый
6. 1500 25 1,2 4,1 в 3,4 раза предлагаемый
7. 1550 25 1,2 4,1 в 3,4 раза предлагаемый
8. 1600 25 1,2 4,1 в 3,4 раза предлагаемый
9. 1620 25 1,2 3,4 в 2,8 раза предлагаемый
10. 1650 25 1,2 Разрушение нанотрубок предлагаемый
11. 1550 15 1,2 3,6 в 3 раза предлагаемый
12. 1550 20 1,2 4,1 в 3,4 раза предлагаемый
13. 1550 30 1,2 4,1 в 3,4 раза предлагаемый
14. 1550 35 1,2 4,0 в 3,3 раза предлагаемый
15. 1550 40 1,2 3,7 в 3,1 раза предлагаемый
Примечание: условия насыщения водородом во всех случаях одинаковы – давление 100 атм, температура 25°С, продолжительность насыщения – 24 часа.

Из таблицы видно, что только при условиях, соответствующих предлагаемым (строки 6-8, 12-13) достигается максимальное увеличение сорбционной емкости углеродных нанотрубок. При этом температура и длительность обработки снижаются по сравнению со способом-прототипом.

Пример

Навеску углеродных нанотрубок массой 1 г помещают в контейнер так, что нанотрубки находятся над источником сульфида цинка массой 0,5 г на расстоянии 30 мм. Контейнер вакуумируют до 10-3 мм рт.ст. и герметизируют. Затем контейнер помещают в безградиентную печь, разогретую до 1550°С, и выдерживают 25 минут. Потом контейнер извлекают, охлаждают и вскрывают. Испарившийся сульфид цинка, сконденсированный на стенках контейнера, собирается для повторного использования. Обработанные нанотрубки насыщаются водородом под давлением 100 атм и при температуре 25°С в течение 24 часов. Сорбционная емкость углеродных нанотрубок увеличивается в 3,4 раза по сравнению с исходным образцом.

Формула изобретения

Способ обработки углеродных нанотрубок, включающий нагрев, отличающийся тем, что обработка проводится при температуре 1500-1600°С в парах сульфида цинка в течение 20-30 мин.

Categories: BD_2296000-2296999