|
(21), (22) Заявка: 2005119826/28, 27.06.2005
(24) Дата начала отсчета срока действия патента:
27.06.2005
(46) Опубликовано: 20.03.2007
(56) Список документов, цитированных в отчете о поиске:
RU 2025009 C1, 15.12.1994. RU 2092950 C1, 20.01.1998. JP 4322481, 12.11.1992. US 4571730 A, 18.02.1986.
Адрес для переписки:
607188, Нижегородская обл., г. Саров, пр. Мира, 37, ФГУП “РФЯЦ-ВНИИЭФ”, начальнику ОПИНТИ
|
(72) Автор(ы):
Великанов Сергей Дмитриевич (RU), Запольский Александр Федорович (RU), Ковалев Евгений Васильевич (RU)
(73) Патентообладатель(и):
Федеральное агентство по атомной энергии (RU), Федеральное государственное унитарное предприятие “Российский федеральный ядерный центр – Всероссийский научно-исследовательский институт экспериментальной физики” (ФГУП “РФЯЦ-ВНИИЭФ”) (RU)
|
(54) ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ЭЛЕКТРОРАЗРЯДНЫЙ ГАЗОВЫЙ ЛАЗЕР ЗАМКНУТОГО ЦИКЛА
(57) Реферат:
Изобретение относится к квантовой электронике и может быть использовано в технологических операциях, медицине, экологии и других областях техники. Импульсно-периодический газовый лазер замкнутого цикла включает корпус в виде двух оболочек, источник питания, резонатор на торцах камеры, систему очистки газовой среды и средство ее прокачки и теплообменник. Оболочки установлены одна в другую с разрядной камерой между ними. Теплообменник и средства очистки газов выполнены в виде единого узла, представляющего собой замкнутый металлический сеточный каркас, заполненный средством очистки газовой среды и установленный в пространстве между оболочками без зазора. Средство прокачки установлено между внутренней оболочкой и замкнутым сеточным каркасом. Техническим результатом изобретения является создание компактной конструкции лазера, обеспечивающей постоянство энергии в импульсах лазерного излучения в течение длительного промежутка времени работы лазера в импульсно-периодическом режиме и повышение КПД лазера. 2 з.п. ф-лы, 2 ил.
Область техники
Устройство относится к квантовой электронике, в частности к импульсно-периодическим электроразрядным газовым лазерам замкнутого цикла с поперечным разрядом и другими видами разряда, может быть использовано в технологических операциях, медицине, экологии и других областях техники.
Уровень техники
Известно, что в импульсно-периодических электроразрядных лазерах с замкнутым циклом смены рабочей среды для формирования однородного объемного разряда в активной зоне требуется постоянное соотношение рабочих компонент, равномерное распределение скорости потока по всей длине электродов и отвод тепла. Одновременное выполнение этих условий представляет собой довольно сложную задачу.
Известен электроразрядный импульсно-периодический газовый лазер с предварительной ионизацией ультрафиолетовым излучением, содержащий разрядную камеру с двумя электродами основного разряда, разделенными разрядным промежутком, средства прокачки газа через разрядный промежуток и средства формирования коронного разряда [1].
Известен электроразрядный газовый лазер, включающий камеру, заполненную рабочей средой, источник питания, устройство формирования разряда, выполненное в виде двух электродов, закрепленных на полом металлическом держателе, установленном на торцах камеры, резонатор, нагнетатель газа и теплообменник [2].
Недостатком лазеров [1, 2] является значительное снижение энергии лазерного излучения из-за быстрого загрязнения рабочей смеси газов и его узлов продуктами химической реакции.
В качестве прототипа выбран наиболее близкий по технической сущности к заявляемому изобретению электроразрядный импульсно-периодический газовый лазер замкнутого цикла, включающий корпус в виде двух оболочек, установленных одна в другую с разрядной камерой между ними, резонатор на торцах камеры, источник питания, и размещенные в полости между оболочками систему прокачки газовой среды, средства ее очистки, теплообменник, а также размещенное вне корпуса лазера дополнительное устройство очистки рабочей среды. При этом система прокачки газов выполнена в виде двух независимых наборов вентиляторов. Средства очистки газов выполнены в виде устройства осаждения серы, размещенного на выходе из разрядной камеры, и химического очистителя, закрепленного на внутренней поверхности внешней оболочки корпуса лазера по обе стороны от теплообменника. Устройство очистки рабочей среды, размещенное вне корпуса лазера, выполнено в виде насосов, соединенных через шаровой вентиль с емкостью, заполненной очистителем (концентрированный раствор NaOH) [3].
Данный лазер обладает высокой частотой следования импульсов излучения.
Недостатком лазера является снижение энергии излучения за малый промежуток времени в каждом последующем импульсе при работе лазера в импульсно-периодическом режиме и, соответственно, снижение выходной мощности лазера, а также низкий КПД. Конструкция лазера громоздка, его составные узлы – теплообменник и система осаждения серы – занимают значительную часть объема лазера. Технический КПД лазера на более низких частотах составляет 1%, а при частоте следования импульсов 4000 Гц снижается до 0,5%, что обусловлено возрастанием общей температуры газа, которое сопровождается соответствующим повышением уровня столкновительных потерь, низкой степенью очистки газовой среды от продуктов химических реакций и другими причинами.
Раскрытие изобретения
Техническим результатом изобретения является создание компактной конструкции лазера и обеспечение постоянства энергии в импульсах лазерного излучения в течение длительного промежутка времени работы лазера в импульсно-периодическом режиме, повышение КПД лазера.
Технический результат в заявляемом изобретении по п.1 достигается тем, что в электроразрядном импульсно-периодическом газовом лазере замкнутого цикла, включающем корпус в виде двух оболочек, установленных одна в другую с разрядной камерой между ними, источник питания, резонатор на торцах камеры, размещенные в полости между оболочками средства очистки газовой среды, систему ее прокачки и теплообменник, новым является то, что теплообменник и средства очистки газов выполнены в виде единого узла, представляющего собой, по крайней мере, один замкнутый металлический сеточный каркас, заполненный средством очистки газовой среды и установленный в пространстве между оболочками без зазора, при этом средство прокачки размещено между внутренней оболочкой и сеточным каркасом.
Во втором варианте выполнения лазера новым является то, что сеточный каркас выполнен из материалов с высокой теплопроводностью.
В третьем варианте выполнения лазера новым является то, что на стенках замкнутого сеточного каркаса дополнительно установлены трубки, соединенные с источником хладагента, размещенным вне оболочек.
Не обнаружены технические решения, совокупность признаков которых совпадает с совокупностью признаков заявляемого импульсно-периодического газового лазера замкнутого цикла по пп.1-3, в том числе с отличительными признаками. Эта новая совокупность признаков является новым техническим средством, который обеспечивает получение технического результата, что позволяет сделать вывод о соответствии заявляемого изобретения критерию “изобретательский уровень”.
Так, в лазере по п.1 выполнение теплообменника и средства очистки газов в виде единого узла, представляющего собой, по крайней мере, один замкнутый металлический сеточный каркас, заполненный средством очистки газовой среды, например химическим сорбентом (далее – сорбентом), установленный в пространстве между оболочками без зазора к ним, позволяет осадить и поглотить продукты химических реакций и тепло, выделяемое в разрядном промежутке. Размещенный за разрядной камерой первый замкнутый сеточный каркас с сорбентом позволяет защитить средства прокачки газа от прямого воздействия продуктов химических реакций и тепла. Второй замкнутый каркас с сорбентом, установленный перед разрядной камерой, позволяет обеспечить дополнительную очистку рабочей среды лазера, равномерно распределить плотность газового потока в ней. Кроме того, выше указанное конструктивное выполнение теплообменника и средства очистки газовой среды в лазере позволяют погасить ударные акустические возмущения, возникающие при электрических разрядах, распространяющиеся вверх и вниз по потоку от разрядной камеры, обеспечивая тем самым оптимальные условия формирования последующих разрядов разряда и повышая энергию генерации.
Таким образом, реализация заявляемого компоновочного и конструктивного решения позволит создать компактную конструкцию лазера и повысить стабильность уровня энергии лазерного излучения от импульса к импульсу при длительной работе лазера и его КПД.
При работе лазера по п.2 выполнение замкнутого сеточного каркаса из материалов с высокой теплопроводностью позволит осуществить интенсивный теплообмен между рабочей средой и единым узлом при работе лазера, что приводит к дополнительному техническому результату – упрощению конструкции лазера.
Установка на стенках замкнутого сеточного каркаса дополнительных трубок в лазере по п.3, по которым циркулирует хладагент из источника, размещенного вне корпуса лазера, позволяет выводить избыточное тепло из активной зоны лазера наружу. Благодаря этому устраняется перегрев средства прокачки и среды, появляется резерв для увеличения мощности и частоты инициирования рабочей среды лазера.
На фиг.1 представлена схема поперечного сечения заявляемого импульсно-периодического электроразрядного газового лазера замкнутого цикла по пп.1-2, содержащее 1 и 2 – соответственно внешнюю и внутреннюю оболочки корпуса лазера, 3 – разрядную камеру, 4 – замкнутый сеточный каркас, 5 – средство очистки газов, 6 – средство прокачки, 7 – источник питания.
На фиг.2 представлена схема поперечного сечения заявляемого импульсно-периодического электроразрядного газового лазера замкнутого цикла по п.3, содержащего 1 и 2 – соответственно внешнюю и внутреннюю оболочки корпуса лазера, 3 – разрядную камеру, 4 – замкнутый сеточный каркас, 5 – средство очистки газов, 6 – средство прокачки, 7 – источник питания, 8 – дополнительные трубки.
Заявляемый лазер работает следующим образом.
Средством прокачки 6, установленным между внутренней 2 и внешней 1 оболочками корпуса, рабочая газовая смесь с оптимальной скоростью потока продувается через замкнутый сеточный каркас 4, заполненный средством очистки газов 5, и по каналу, образованному оболочками корпуса 1 и 2, с необходимой для данной частоты следования лазерных импульсов и равнораспределенной по всей длине основных электродов скоростью потока поступает в разрядную камеру 3. Причем замкнутый сеточный каркас 4 размещен в пространстве между оболочками 1 и 2 и торцами корпуса без зазора. По сигналу управления напряжение на источнике питания 7 – генераторе импульсных напряжений (ГИН) – повышается до заданного уровня и после включения коммутатора между основными электродами происходит объемный электрический разряд. Разогретая в результате разряда и содержащая продукты химической реакции рабочая газовая среда выносится потоком из межэлектродного промежутка в пространство между оболочками корпуса 1, 2 и замкнутым сеточным каркасом 4, где происходят падение скорости потока и равномерное распределение газа по всей площади сеточного каркаса 4. Крупные частицы, в том числе сажа и сера, если в состав активной среды входят содержащие их компоненты, осаждаются на первой по потоку сетке каркаса 4 и наружном слое сорбента – средства очистки газа 5. Газообразные продукты химических реакций поглощаются сорбентом 5. Скорость прокачки газовой смеси через сорбент 5 подбирается оптимальной для процессов очистки и поддержания постоянства температуры внутри замкнутого объема лазера путем подбора толщины и площади поверхности фильтра. Очищенная газовая смесь поступает к вентиляторам 6, которые нагнетают газовую смесь в полость между оболочками корпуса 1, 2 или в полость между внутренней оболочкой 2 и вторым сеточным каркасом 4, при его наличии. Далее процесс повторяется, газовая смесь непосредственно или после дополнительной очистки вновь поступает в межэлектродный промежуток разрядной камеры. При этом конкретные формы каркасов подбираются на моделях для обеспечения максимального содержания сорбента, наиболее эффективной очистки рабочей смеси и минимального сопротивления для потока рабочей смеси.
На предприятии проведено расчетно-теоретическое обоснование работоспособности заявляемого лазера в импульсно-периодическом режиме с замкнутым циклом смены рабочей среды, а также разработаны и выполнены опытные образцы лазера. Показано получение постоянства энергии импульсов лазерного излучения в течение нескольких десятков тысяч импульсов, увеличение времени непрерывной работы лазера и предусмотрено поддержание оптимального температурного режима.
Проведено экспериментальное подтверждение работоспособности заявляемого лазера. В заявляемом лазере с внешней подпиткой газов, стабилизирующей состав газовых компонент, получено постоянство энергии импульсов лазерного излучения 106 импульсов инициирования при значительном повышении КПД по сравнению с аналогом. Обеспечено постоянство температуры рабочей смеси и узлов разрядной камеры в заданных пределах независимо от длительности работы лазера.
Заявляемый электроразрядный импульсно-периодический газовый лазер замкнутого цикла компактной конструкции найдет применение в технологических операциях, медицине, экологии и других областях техники.
Источники информации
1. И.В.Павлишин, Ю.А.Балошин,
патент RU 2025009, H 01 S 3/097, 15.12.94.
2. В.В.Атежев, С.К.Вартапетов,
патент RU 2113749, H 01 S 3/03, 20.06.98.
3. Rudko R.I., Drozdowicz Z., Linhares S., Bua D.
Rev. Sci. Instr., 53, 452, 1982.
Формула изобретения
1. Импульсно-периодический электроразрядный газовый лазер замкнутого цикла, включающий корпус в виде двух установленных одна в другую оболочек с разрядной камерой между ними, источник питания, резонатор на торцах камеры, размещенные в полости между оболочками теплообменник, средства очистки газов и их прокачки, отличающийся тем, что теплообменник и средства очистки газов выполнены в виде единого узла, представляющего собой, по крайней мере, один замкнутый металлический сеточный каркас, заполненный средством очистки газовой среды и установленный в пространстве между оболочками без зазора, при этом средство прокачки установлено между внутренней оболочкой и замкнутым сеточным каркасом.
2. Импульсно-периодический электроразрядный газовый лазер по п.1, отличающийся тем, что замкнутый сеточный каркас, выполненный из материалов с высокой теплопроводностью, служит теплообменником.
3. Импульсно-периодический электроразрядный газовый лазер по п.1 или 2, отличающийся тем, что на стенках замкнутого сеточного каркаса дополнительно установлены трубки, соединенные с источником хладагента, размещенным вне оболочек.
РИСУНКИ
|
|