Патент на изобретение №2295788
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ЭКСТРАКЦИОННАЯ СМЕСЬ ДЛЯ СВЕРХКРИТИЧЕСКОЙ ЭКСТРАКЦИИ ОКИСЛОВ АКТИНИДОВ
(57) Реферат:
Изобретение относится к области сверхкритической или субкритической экстракции металлов и может быть использовано для экстракции актинидов. В изобретении предлагается экстракционная смесь, состоящая из
Изобретение относится к области сверхкритической или субкритической экстракции металлов и может быть использовано для экстракции актинидов. Известны способы экстракции актинидов с помощью водных методов – например, Пурекс-процесс и его модификации [В.М.Вдовенко, Современная радиохимия, Атомиздат, М. 1969, с.459-468], где в качестве экстракционной смеси используются нейтральные фосфорорганические соединения (как правило, трибутилфосфат (ТБФ)) в различных разбавителях. При экстракции актинидов такими способами необходимо не менее 2 м3 раствора азотной кислоты, и дальнейшее извлечение приводит к образованию еще 4-6 м3 водных радиоактивных растворов в расчете на 1 тонну урана Известны также “сухие” способы экстракции актинидов [В.М.Вдовенко, Современная радиохимия, Атомиздат, М. 1969, с.468-482]. К их недостаткам относится проведение процессов при повышенной температуре. Известны способы сверхкритической экстракции комплексов металлов с помощью углекислого газа в присутствии комплексонов, например трибутилфосфата /Y.Lin, R.D.Brauer, K.E.Laintz, C.M.Wai, Supercritical Fluid Extraction of Lanthanides and Actinides from Solid Materials with a Fluorinated Наиболее близкой к заявляемой смеси является экстракционная смесь, содержащая Недостатком прототипа является использование для обеспечения полноты извлечения металла большого избытка Задачей предлагаемого изобретения является сокращение количества водных отходов при обеспечении извлечения актинидов. Для решения поставленной задачи предлагается экстрационная смесь, включающая Полученная смесь солей известными методами может быть превращена в смесь окислов, например, прокаливанием или плазмохимической обработкой. Возможно использование как сверхкритического флюида – например, углекислого газа или фреона, так и субкритического (когда углекислый газ или фреон еще остаются жидкими). Выбор того или другого варианта определяется, исходя из экономических соображений. Предлагаемая экстракционная смесь позволяет экстрагировать актиниды способом, при котором применяемые реагенты легко могут быть регенерированы и вновь использованы в процессе. Следующие примеры иллюстрируют возможности применения экстракционной смеси. Пример 1 Навеску 500 мкг окиси урана помещали в экстракционную ячейку объемом 5 мл, куда нагнетали под давлением 400 атм и при температуре 60°С углекислый газ, содержащий 0,02% об. гексафторацетилацетона, 0,02% об. диглима (диметилового эфира диэтиленгликоля) и 0,02% об. воды, ячейку оставляли при этих условиях на 20 минут, после чего через ячейку прокачивали 10 ячеечных объемов чистого углекислого газа и собирали экстракт при снижении давления до атмосферного при температуре 25°С. Извлечение урана составило 10%. Полученный результат свидетельствует, что в динамическом режиме с использованием этой экстракционной смеси уран полностью перейдет в экстракт в избытке дикетона и лиганда. Пример 2 Навеску U3O8 окиси-закиси урана помещали в экстракционную ячейку объемом 5 мл, куда нагнетали под давлением 70 атм и при температуре 25°С углекислый газ, содержащий реагенты (см. табл.1), ячейку оставляли при этих условиях на 25 минут, после чего через ячейку прокачивали 10 ячеечных объемов чистого углекислого газа и собирали экстракт при снижении давления до атмосферного при температуре 25°С. Извлечение урана приведено в табл.1.
Приведенные в табл.1 данные показывают, что эффективность экстракции урана предложенной экстракционной смесью выше, чем по прототипу. Пример 3 Навеску U3O8 окиси-закиси урана или UO3 – трехокиси урана помещали в экстракционную ячейку объемом 5 мл, куда нагнетали под давлением 70 атм. и при температуре 60°С углекислый газ, содержащий реагенты (см. табл.2), ячейку оставляли при этих условиях на 25 минут, после чего через ячейку прокачивали 10 ячеечных объемов (50 мл) чистого углекислого газа и собирали экстракт при снижении давления до атмосферного при температуре 25°С. Извлечение урана приведено в табл.2. (МИБК – метилизобутилкетон, ТФА – трифторацетилацетон, ГФА – гексафторацетилацетон).
Из данных, приведенных в табл.2, следует, что и в сверхкритических условиях эффективность экстракции урана предлагаемой экстракционной смесью не отличается от прототипа и достаточна для извлечения в динамических условиях всего металла. Пример 4 Навеску U3O8 окиси-закиси урана помещали в экстракционную ячейку объемом 5 мл и проводили сверхкритическую экстракцию, как описано в примере 2 (ГФА=1,94 мл, диглим=0,91 мл, 70 атм, 25 мин, 25°С, объем прокачки 35 мл). После окончания экстракции остаток в ячейке обрабатывали новой порцией реагентов. За четыре последовательные экстракции было экстрагировано 95% урана, что свидетельствует о возможности полного извлечения урана. Пример 5 Порошок твердого раствора U3O8 – PuO2, содержащий 2% моль плутония, помещали в экстракционную ячейку и проводили экстракцию смесью ГФА – диглим в условиях примера 4. Извлечение урана составило 15%, извлечение плутония – 14%. Пример 6 Смесь окислов UO3 – PuO2, содержащую 2% моль плутония, помещали в экстракционную ячейку и проводили экстракцию смесью ГФА – диглим в условиях примера 4. Извлечение урана составило 15%, извлечение плутония – 0%. Пример 7 Полученный в примере 2 раствор комплекса урана с ГФА и диглимом обрабатывали рассчитанным количеством азотной кислоты. ГФА и диглим отгоняли от полученного уранилнитрата перегонкой (температура кипения диглима 161°С). Выделенные ГФА и диглим пригодны для повторного использования в сверхкритической экстракции. Пример 8 Полученный в примере 2 раствор комплекса урана с ГФА и 1,2-диметоксиэтаном обрабатывали рассчитанным количеством щавелевой кислоты. ГФА и 1,2-диметоксиэтан отгоняли из полученного оксалата уранила перегонкой. Выделенные ГФА и 1,2-диметоксиэтан пригодны для повторного использования. Оксалат уранила при прокаливании дает оксид урана. Приведенные в примерах данные свидетельствуют, что возможно извлечение актинидных элементов предлагаемой экстракционной смесью. Регенерация компонентов предлагаемой экстракционной смеси производится после обработки кислотами простой перегонкой при нормальном давлении и температуре. Как дикетоны, так и предлагаемые лиганды устойчивы в этих условиях, что обеспечивает эффективную регенерацию экстракционной смеси. Предлагаемые в прототипе фосфорорганичекие соединения требуют применения для регенерации высоких температур и пониженного давления (менее 1 мм рт.ст.) – в противном случае наблюдается их разложение, что приведет к загрязнению получаемого продукта.
Формула изобретения
1. Экстракционная смесь для экстракции актинидов, включающая 2. Экстракционная смесь по п.1, отличающаяся тем, что мольное соотношение дополнительный комплексен – 3. Экстракционная смесь по п.1 или 2, отличающаяся тем, что в качестве растворителя используется углекислый газ или фреон в сверхкритическом или жидком состоянии.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||