Патент на изобретение №2295173

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2295173 (13) C2
(51) МПК

H01L23/34 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.12.2010 – действует

(21), (22) Заявка: 2005114211/28, 11.05.2005

(24) Дата начала отсчета срока действия патента:

11.05.2005

(43) Дата публикации заявки: 20.11.2006

(46) Опубликовано: 10.03.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2142174 C1, 27.11.1999. SU 1745138 A3, 30.06.1992. US 6706562 В2, 16.03.2004. ЕР 0732743 А2, 18.09.1996.

Адрес для переписки:

141070, Московская обл., г. Королев, ул. Ленина, 4а, ОАО “РКК “Энергия” им. С.П. Королева”, отдел интеллектуальной собственности

(72) Автор(ы):

Тюльменков Валерий Александрович (RU),
Захаров Борис Семенович (RU)

(73) Патентообладатель(и):

Открытое акционерное общество “Ракетно-космическая корпорация “Энергия” им. С.П. Королева” (RU)

(54) СПОСОБ УСТАНОВКИ ПРИБОРОВ НА ТЕРМОСТАТИРУЕМЫХ ПАНЕЛЯХ

(57) Реферат:

Изобретение относится к области приборостроения, в частности к способу установки приборов на термостатируемых панелях космических аппаратов. Сущность изобретения: способ установки приборов на термостатируемых панелях включает нанесение теплопроводящего слоя из терморасширенного графита на контактирующую поверхность прибора и/или термостатируемую панель и установку прибора контактирующей поверхностью на термостатируемой панели при помощи крепежных элементов с последующей подпрессовкой теплопроводящего слоя, причем в зонах крепежных элементов между контактирующей поверхностью прибора и термостатируемой панелью устанавливают жесткие прокладки, толщина Н которых определяется по формуле: H=(S-A)×(1-/100), где S – минимальная исходная толщина теплопроводящей прокладки, мм; А – суммарная неплоскостность контактирующей поверхности прибора и термостатируемой панели под ним, мм; – минимально требуемая величина подпрессовки теплопроводящей панели, %. Техническим результатом изобретения является предохранение теплопроводящего слоя от появления остаточных деформаций под действием на прибор статических и динамических нагрузок и уменьшение диапазона степени подпрессовки теплопроводящего слоя.

Изобретение относится к области приборостроения, в частности к способу установки приборов на термостатируемых панелях космических аппаратов.

Известен способ установки приборов на установочных панелях, включающий соединение установочной панели с контактирующей поверхностью прибора (“Конструкция и проектирование космических летательных аппаратов” / Под ред. В.В.Сафронова, М.: “Машиностроение”, 1986 г.).

Недостатком данного способа установки приборов является малый ресурс приборов из-за недостаточного отвода тепла.

Наиболее близким по технической сущности к предлагаемому решению является способ установки приборов на термостатируемых панелях, включающий нанесение теплопроводящего слоя из терморасширенного графита на контактирующую поверхность прибора и/или термостатируемую панель, установку прибора контактирующей поверхностью на термостатируемой панели при помощи крепежных элементов с последующей подпрессовкой теплопроводящего слоя (патент РФ №2142174).

Под действием со стороны прибора на слой терморасширенного графита статических и динамических нагрузок на участке выведения космического аппарата на орбиту в нем вследствие малой прочности могут появиться остаточные деформации, что приведет к ухудшению теплопередачи от основания прибора к термостатирумой панели.

Теплопроводность слоя терморасширенного графита зависит от степени его подпрессовки при установке прибора, которая зависит от площади основания прибора, количества и усилий затяжки крепежных элементов. Это приводит к большому разбросу тепловых характеристик слоя терморасширенного графита и усложняет регулирование параметров системы термостатирования космического аппарата.

Задачей изобретения является предохранение теплопроводящего слоя из терморасширенного графита от появления остаточных деформаций под действием на прибор статических и динамических нагрузок и уменьшение диапазона степени подпрессовки теплопроводящего слоя.

Сущность изобретения заключается в том, что в способе установки приборов на термостатируемых панелях, включающем нанесение теплопроводящего слоя из терморасширенного графита на контактирующую поверхность прибора и/или термостатируемую панель и установку прибора контактирующей поверхностью на термостатируемой панели при помощи крепежных элементов с последующей подпрессовкой теплопроводящего слоя, в отличие от прототипа, в зонах крепежных элементов между термостатируемой панелью и контактирующей поверхностью прибора устанавливают жесткие прокладки, толщина Н которых определяется по формуле:

H=(S-A)×(1-/100),

где S – минимальная исходная толщина теплопроводящей прокладки;

А – суммарная неплоскостность контактирующей поверхности прибора и термостатируемой панели под ним;

– минимально требуемая величина подпрессовки теплопроводящего слоя, %.

Установка жестких прокладок обеспечивает фиксацию прибора относительно термостатированной панели и предохраняет теплопроводный слой от повреждения, передавая статические и динамические нагрузки с прибора на термостатируемую панель.

Техническим результатом предлагаемого изобретения является то, что установка жестких прокладок и затягивание элементов крепления до устранения зазоров между прибором, жесткими прокладками и термостатируемой панелью обеспечивает определенную степень подпрессовки теплопроводящего слоя и соответственно его теплопередающие характеристики.

Предлагаемый способ может быть реализован следующим образом. На контактирующей поверхности прибора, например, массой 10 кг и площадью 75×45 см2 закрепляют теплопроводящий слой из терморасширенного графита в виде прокладки. Прибор монтируют на термостатируемой панели космического аппарата с помощью 12-ти болтов. В зонах болтов в теплопроводящей прокладке вырезают отверстия по размерам жестких, например, металлических прокладок, которые закрепляют на контактирующей поверхности прибора. Прибор устанавливают на термостатируемую панель и припрессовывают его к панели, затягивая болты до устранения зазора между жесткими прокладками и термостатируемой панелью, обеспечивая при этом необходимую величину подпрессовки теплопроводящей прокладки. Толщина жестких прокладок напрямую зависит от величины подпрессовки теплопроводящего слоя из терморасширенного графита и величины неплоскостности между контактирующей поверхностью прибора и поверхностью термостатируемой панели под ним. Отсюда можно сделать вывод, что толщина жестких прокладок Н будет определяется как разность между минимальной исходной толщиной теплопроводящей прокладки и суммарной неплоскостностью, уменьшенной на величину требуемой подпрессовки теплопроводящей прокладки:

H=(S-A)×(1-/100),

где S – минимальная исходная толщина теплопроводящей прокладки, мм;

А – суммарная неплоскостность контактирующей поверхности прибора и термостатируемой панели под ним, мм;

– минимально требуемая величина подпрессовки теплопроводящей панели, %.

Если минимальная исходная толщина теплопроводящей прокладки 1 мм, минимальная требуемая подпрессовка терморасширенного графита составляет =20% (т.е. в результате подпрессовки толщина теплопроводящего слоя должна составить 80% от исходной), а суммарная неплоскостность основания прибора и термостатируемой панели под ним 0,4 мм, то толщина жестких прокладок:

Н=(1-0,4)0,8=0,48 мм.

Предлагаемый способ установки приборов на термостатируемых панелях имеет следующие преимущества:

1) предохраняет теплопроводящий слой при действии на прибор статических и динамических нагрузок;

2) обеспечивает определенную степень подпрессовки теплопроводящего слоя и уменьшает разброс характеристик теплопроводящего слоя;

3) обеспечивает постоянный контакт поверхности прибора, теплопроводящего слоя и термостатируемой панели.

Формула изобретения

Способ установки приборов на термостатируемых панелях, включающий нанесение теплопроводящего слоя из терморасширенного графита на контактирующую поверхность прибора и/или термостатируемую панель, установку прибора контактирующей поверхностью на термостатируемой панели при помощи крепежных элементов с последующей подпрессовкой теплопроводящего слоя, отличающийся тем, что в зонах крепежных элементов между термостатируемой панелью и контактирующей поверхностью прибора устанавливают жесткие прокладки, толщина Н которых определяется по формуле:

H=(S-A)·(1-/100),

где S – минимальная исходная толщина теплопроводящего слоя, мм;

А – суммарная неплоскостность контактирующей поверхности прибора и термостатируемой панели под ним, мм;

– минимально требуемая величина подпрессовки теплопроводящего слоя, %.

Categories: BD_2295000-2295999