Патент на изобретение №2294383

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2294383 (13) C2
(51) МПК

C21C7/10 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.12.2010 – действует

(21), (22) Заявка: 2005109625/02, 04.04.2005

(24) Дата начала отсчета срока действия патента:

04.04.2005

(43) Дата публикации заявки: 10.10.2006

(46) Опубликовано: 27.02.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2073729 C1, 20.02.1997. SU 621745 A, 30.08.1978. US 4224058 A, 23.09.1980. СОКОЛОВ Г.А. Производство стали. М., Металлургия, 1982, с.350-352.

Адрес для переписки:

620078, г.Екатеринбург, а/я 79, И.С. Иваницкой

(72) Автор(ы):

Ползунов Олег Александрович (RU)

(73) Патентообладатель(и):

Ползунов Олег Александрович (RU)

(54) СПОСОБ СТРУЙНО-ВАКУУМНОГО РАФИНИРОВАНИЯ СТАЛИ

(57) Реферат:

Изобретение относится к области металлургии, а именно к процессам внепечной обработки стали. До струйного вакуумирования осуществляют предварительное раскисление стали путем введения в расплав раскислителей, таких как алюминий, титан, кальций, магний и/или их сплавы, в количестве, определяемом содержанием углерода в этом расплаве. Изобретение позволяет повысить устойчивость и стабильность технологического процесса и снизить величину общего остаточного кислорода в стали после обработки путем связывания большей части кислорода в оксидные неметаллические включения до вакуумной обработки. 5 з.п. ф-лы.

Изобретение относится к области металлургии, а именно к процессам внепечной обработки стали.

Известен способ внепечного рафинирования стали и сплавов при струйном вакуумировании [Соколов Г.А. “Производство стали” М., “Металлургия”, 1982, стр.350]. В вакуумную камеру устанавливается изложница или пустой ковш, крышка камеры оборудована устройством для герметичного соединения с днищем верхнего ковша. Слой металла в этом устройстве служит по ходу перелива жидким затвором, препятствующим проходу воздуха в вакуум-камеру. Вакуум в полости камеры создается перед началом перелива. После вакуумирования переливом нераскисленного металла из ковша в ковш открывают крышку камеры и увозят нижний ковш с металлом на разливку.

Для снижения потерь тепла по ходу струйного вакуумирования разработан способ вакуумной обработки на выпуске плавки. Перепад температур в этом варианте струйного вакуумирования составляет 40-60°С, что всего на 15-20°С превышает обычное снижение температуры на выпуске плавки.

Однако невысокий перегрев стали перед обработкой обеспечивает расширение струи при попадании в вакуум только за счет ее турбулизации вблизи стенок сталеразливочного стакана, при этом рост пузырьков обеспечивается за счет пористости футеровки стенок стакана. При этом пенная структура образуется только в периферийной части струи, а ее расширение определяется газонасыщенностью стали и количеством газов, выделившихся в этой периферийной части, которое тем больше, чем больше растворено газов в стали.

Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ рафинирования стали [патент РФ №2073729], включающий струйное вакуумированние стали в кавитационном режиме и введение в расплав редкоземельных металлов (РМЗ) на дно приемной емкости или промежуточной воронки в количестве 0,15-0,70%.

При струйном вакуумировании в кавитационном режиме зародыши пузырьков образуются не только в периферийной части струи, но и внутри объема струи за счет явления кавитации, обеспечиваемой низкой вязкостью перегретой на определенную температуру стали. В этом случае пузырьково-пленочная структура (ППС) формируется по всему сечению струи и не зависит от содержания всех растворенных в стали газов.

Струйное вакуумирование стали в кавитационном режиме обеспечивает максимальное формирование ППС струи стали, позволяющей получать поверхность раздела “пузырек – металл” до 25000 м2 на 1 т стали.

Но при этом возникают следующие недостатки.

Формирование такого объема ППС приводит к вероятности перелива ковша (если приемной емкостью служит 2-й ковш) или изложницы (если происходит отливка слитка в вакууме). Неопределенность развития объема пенной структуры в зависимости от марки обрабатываемой стали и полученной температуры перед обработкой приводит к нестабильности технологии и возможности создания аварийной ситуации из-за чрезмерного ценообразования, приводящего к обливу приемной емкости с последующим ее “закозлением”.

Удаление кислорода из расплава при струйном вакуумировании идет как путем протекания реакции С+О=СО на границе раздела “пузырек-расплав”, так и путем флотационного воздействия пузырьков на имеющиеся в расплаве оксидные неметаллические включения (ОНВ), содержащие кислород в связанном виде. В случае отсутствия в расплаве перед вакуумированием сильных раскислителей, таких как Al и ему подобные, содержание кислорода в связанном виде в форме ОНВ колеблется от 30 до 50% в зависимости от марки стали. При этом процесс обработки стали в вакууме в струе настолько скоротечен, что реакция окисления углерода кислородом не достигает равновесия из-за невысокого коэффициента диффузии атома кислорода к поверхности раздела “пузырек-расплав” и, как следствие, уменьшает эффективность струйно-вакуумной обработки стали с точки зрения удаления кислорода.

Это требует снижения скорости вакуумирования или кратковременной остановки технологического процесса для осаждения “пены”, что может привести к аварийной ситуации, повышению брака и снижению производительности способа.

Кроме того, введение РЗМ в приемную емкость, находящуюся в вакуумной камере, не обеспечивает связывания большей части кислорода в ОНВ до вакуумной обработки, что приводило бы к максимально возможному удалению общего кислорода из металла при струйном вакуумировании. В результате снижается содержание растворенного кислорода в стали после вакуумирования, но повышается содержание общего кислорода (растворенного плюс связанного в ОНВ), а также повышается содержание оксидных неметаллических включений после обработки. К тому же оксидные неметаллические включения, содержащие РЗМ, как правило, остроугольной формы и могут образовывать “облака”, называемые “цериевой неоднородностью”, что снижает качество рафинированной стали.

В настоящее время общепризнано, что максимальную эффективность вакуумирования в струе можно обеспечить только при обработке нераскисленной сильными раскислителями, такими как Al и ему подобные по сродству кислороду, стали [Соколов Г.А. “Производство стали” М., “Металлургия”, 1982 стр.351-352].

Такой вывод связан с тем, что, не раскрыв механизма струйно-вакуумной обработки, последнюю ведут в “турбулентном” режиме истечения, когда образование пенной структуры происходит на стенках стакана сталеразливочного ковша, установленного на крышке вакуумной камеры.

При определенных параметрах вакуумной обработки, предложенных в настоящей заявке, можно и нужно (с точки зрения производительности, техники безопастности и получаемых результатов, раскрытых в настоящем описании) производить глубокое раскисление стали перед обработкой в вакууме “сильными” раскислителями, такими как Al и ему подобные.

В основу изобретения положена задача увеличения производительности способа за счет повышения устойчивости и стабильности технологического процесса и снижения величины общего остаточного кислорода в стали после обработки путем связывания большей части кислорода в ОНВ до вакуумной обработки.

Поставленная задача решается тем, что в способе струйно-вакуумного рафинирования стали, включающем струйное вакуумированние стали в кавитационном режиме, согласно изобретению до струйного вакуумирования осуществляют предварительное раскисление стали путем введения в расплав раскислителей, таких как алюминий, титан, кальций, магний и/или их сплавы, в количестве, определяемом содержанием углерода в этом расплаве.

При этом:

– перед вакуумной обработкой в кавитационном режиме сталь перегревают на 100-250°С выше точки ликвидус для данной марки стали;

– при содержании углерода до 0,30% в расплав вводят раскислители в количестве до 400 г на тонну стали;

– при содержании углерода 0,30-0,60% в расплав вводят раскислители в количестве до 300 г на тонну стали;

– при содержании углерода свыше 0,60% в расплав вводят раскислители в количестве до 200 гр на тонну стали.

– раскислители вводят в расплав непосредственно по ходу его выпуска или на дно приемной емкости, подаваемой под печь.

Предварительное глубокое раскисление стали перед ее дальнейшей обработкой позволяет получить в ней содержание кислорода максимально связанным в ОНВ и, следовательно, уменьшить объем ППС (но не количество зародышей газовых пузырьков, обеспечиваемое заданной вязкостью стали, достигаемое температурным фактором).

Развитие пузырьково-пленочной структуры струи стали при истечении ее в вакуум происходит в три этапа:

– на первом возникают кавитационные полости (разрывы) в объеме струи стали за счет центробежных сил внутри турбулентных вихрей, которые обеспечиваются температурным интервалом обработки,

– на втором этапе в эти разрывы происходит переход растворенных в атомарном виде газов в металле путем их молизации (водород и азот) или по реакции С+О=СО;

– на третьем этапе газовые зародыши, достигшие размеров больше критического, начинают расти за счет дальнейшего перехода растворенных в металле газов и формируется пузырьково-пленочная структура струи стали.

Оценочные расчеты, выполненные на основании литературных данных, а также опытные данные по промышленным плавкам, полученные в ходе проведенных экспериментов, позволяют утверждать, что при обработке стали струйным способом в кавитационном режиме формирование ППС происходит на 30-40% за счет выделившегося водорода, на 40-60% за счет выделившегося кислорода в виде СО и на 10-30% за счет выделяющегося азота.

Предварительное введение в металл до струйного вакуумирования таких сильных раскислителей, как как алюминий, титан, кальций, магний и/или их сплавы, позволяет формировать ППС в достаточном объеме (позволяющем эффективно удалять из металла растворенные в нем газы) и необходимых параметров (толщина пленки металла в такой ППС остается минимальной, что обеспечивает минимальные пути диффузии для газов), т.к. мы не вмешиваемся в первый этап формирования ППС струи стали, обеспечивающий ее эффективность.

Способ осуществляется следующим образом.

Металл из сталеплавильного агрегата выпускают в приемный ковш, на дно которого присаживают Al (в виде алюминиевых чушек и/или AMS) в количестве, определяемом содержанием в расплаве углерода, из расчета тех цифр, что приведены выше. Металл переливают в вакууме в кавитационном режиме, что обеспечивается температурным интервалом обработки (например, для стали типа 34ХН1М температура должна быть не менее 1640-1660°С при входе металла в вакуумную камеру), при этом удаление кислорода осуществляют в количестве до 80% за счет наличия пузырьково-пленочной структуры металла.

Пример. В дуговой электропечи емкостью 25 тонн выплавили сталь 34ХН1М. Температура металла в ковше после выпуска составила 1660°С, что на 185°С выше точки ликвидус. На струю стали при выпуске из печи в ковш предварительно присадили чушковый алюминий в количестве 8 кг, что составило 320 г на тонну стали. В результате обработки металла в вакууме путем перелива из ковша в ковш получили следующие результаты: содержание водорода снизилось с 5,2 ррм до 1,7 ррм, содержание кислорода снизилось с 0,012% до 0,0023%, содержание азота достигло 0,004%, при исходном 0,009%.

Формула изобретения

1. Способ струйно-вакуумного рафинирования стали в кавитационном режиме, отличающийся тем, что до струйного вакуумирования осуществляют предварительное раскисление стали путем введения в расплав раскислителей, таких, как алюминий, титан, кальций, магний и/или их сплавы, в количестве, определяемом содержанием углерода в этом расплаве.

2. Способ по п.1, отличающийся тем, что перед струйным вакуумированием сталь перегревают на 100-250°С выше точки ликвидуса для данной марки стали.

3. Способ по п.1, отличающийся тем, что при содержании углерода до 0,30% в расплав вводят раскислители в количестве до 400 г на тонну стали.

4. Способ по п.1, отличающийся тем, что при содержании углерода 0,30-0,60% в расплав вводят раскислители в количестве до 300 г на тонну стали.

5. Способ по п.1, отличающийся тем, что при содержании углерода свыше 0,60% в расплав вводят раскислители в количестве до 200 г на тонну стали.

6. Способ по п.1, отличающийся тем, что раскислители вводят в расплав непосредственно по ходу его выпуска или на дно приемной емкости, подаваемой под печь.


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 05.04.2008

Извещение опубликовано: 27.07.2009 БИ: 21/2009


NF4A – Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 27.07.2009

Извещение опубликовано: 27.07.2009 БИ: 21/2009


Categories: BD_2294000-2294999