Патент на изобретение №2293784
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПЛАВ НА ОСНОВЕ МАГНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
(57) Реферат:
Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей, работающих при высоких температурах. Предложен сплав на основе магния. Он содержит, мас.%: Zn 0,1-2,0, Zr 0,05-0,9, Са 0,005-0,1, Cd 0,005-2,0, Si 0,005-0,05, Be 0,0005-0,01, Y 3,5-9,0, Gd и/или Dy 0,005-0,3, Mg – остальное. Применение предлагаемого сплава для изготовления свариваемых и несвариваемых нагруженных деталей планера самолетов, ракет, в том числе в качестве панелей обслуживания, приборных панелей, качалок, кронштейнов, деталей управления, работающих при комнатной и повышенных (до 300°С) температурах, а также для производства деталей спортивных велосипедов, автомобилей, мотоциклов, спортивного инвентаря, обеспечит повышение качества, увеличение ресурса и надежности этих изделий. 2 н.п. ф-лы, 2 табл.
Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей кресел, кронштейнов, качалок, деталей приборных отсеков, деталей пульта управления, обечаек и т.д., а также деталей, работающих при высоких температурах. Известен сплав на основе магния следующего химического состава, мас.%:
(справ. “Магниевые сплавы. Том 1. “Металловедение магния и его сплавов. Области применения.” Под ред. М.Б.Альтмана, М.Е.Дрица, М.А.Тимоновой и др., М.: Металлургия, 1979 г., с.110). Недостатками этого сплава и изделий из него являются значительная анизотропия прочностных свойств в поперечном направлении, низкий уровень пластичности и невозможность получения сварных соединений. Сплав не пригоден для получения катаных полуфабрикатов в промышленных условиях. Это приводит к сокращению номенклатуры деталей. Изделия, изготовленные из этого сплава, например приборные отсеки, приборные панели, детали кресел и т.д., будут обладать невысокими качеством и надежностью. Известен также состав присадочной проволоки для сварки магниевых сплавов следующего химического состава, мас.%:
(а. с. СССР №572355) Недостатком этого состава являются неудовлетворительные механические и технологические свойства, в связи с чем известный состав может быть использован только в качестве присадочной проволоки. При применении известного состава при сварке магниевых сплавов в шве могут возникать значительные внутренние напряжения, что приводит к образованию трещин, снижению пластичности сварного шва. Известен сплав на основе магния следующего химического состава, мас.%:
и изделие, выполненное из него (Патент РФ №2245389). Сплав и сварные соединения, изготовленные из этого сплава с применением его в качестве присадочного материала, и изделия, выполненные из этого сплава (панели обслуживания, приборные пенели, качалки, рычаги и т.д., обладают хорошим запасом пластичности, малой анизотропией свойств. В связи с появлением изделий нового поколения и повышением требований конструкторов к прочностным характеристикам сплава и к изделиям, выполненным из него, не только при комнатной температуре, но и при повышенных температурах (200-300°С), ужесточению требований к прочности сварных соединений, возникла необходимость в разработке нового сплава. Наиболее близким аналогом, взятым за прототип, является сплав на основе магния следующего химического состава, мас.%:
(Патент США №6299834) Недостатками известного сплава являются: невысокий уровень прочностных свойств при комнатной температуре и при температурах 200, 300°С, повышенная анизотропия этих свойств; из сплава невозможно получить качественные высокопрочные изделия. При использовании сплава в качестве присадочного материала сварные соединения не обладают удовлетворительной прочностью и трещиностойкостью. Изделие, выполненное из этого сплава (тонкостенные детали сложной конфигурации типа приборных панелей), обладает недостаточной прочностью, пластичностью, имеет высокую анизотропию прочностных свойств. Технической задачей изобретения является повышение прочностных свойств сплава на основе магния и изделий, выполненных из него, не только при комнатной температуре, но и при температурах (200, 300°С), снижение анизотропии в поперечном направлении, а также повышение прочностных свойств сварных соединений при сохранении высокой трещиностойкости. Поставленная техническая задача достигается тем, что предложен сплав на основе магния, содержащий цинк, цирконий, кальций, РЗМ, который дополнительно содержит кадмий, кремний, бериллий, а в качестве РЗМ – иттрий, гадолиний и/или диспрозий при следующем соотношении компонентов, мас.%:
и изделие, выполненное из него. Авторами было установлено, что дополнительное введение кадмия, кремния, бериллия в заявленных пределах улучшает пластичность сплава при проведении деформации и снижает склонность к горячему растрескиванию в процессе сварки. Введение редкоземельных металлов иттриевой подгруппы (иттрия, гадолиния и/или диспрозия) в сплав в заявленных пределах приводит к возникновению эффекта, состоящего в том, что совместное действие элементов иттриевой подгруппы на свойства сплава усиливается, что вызывает значительное повышение прочностных свойств сплава и его сварных соединений. Повышается прочность сплава не только при комнатной, но и при высоких температурах, одновременно снижается анизотропия механических свойств. Это объясняется спецификой интерметаллических соединений и характером основного твердого раствора, поскольку вводимые РЗМ при растворении достаточно равномерно упрочняют основной – твердый раствор, приводя к снижению структурной анизотропии и выравниванию механических свойств в поперечном направлении по отношению к оси деформации в деформированных полуфабрикатах. Благодаря особенностям легирования повышаются прочностные характеристики предлагаемого сплава и его сварных соединений при хорошем запасе пластичности, а также улучшаются свойства сварных соединений других магниевых сплавов при использовании заявляемого сплава в качестве присадочного материала. Высокие прочностные свойства деформированных полуфабрикатов из предлагаемого сплава сохраняются в интервале температур 20-300°С. Повышается трещиностойкость сварных соединений. При использовании предлагаемого сплава увеличиваются надежность и ресурс изделий. Примеры осуществления Предлагаемый сплав и сплав-прототип были приготовлены в одинаковых условиях. В газовом горне с применением флюса ВИ-2 в соответствии с расчетом шихты отлиты плавки, масса каждой составила 10 кг. Получены круглые и плоские слитки каждого сплава. После обточки круглые слитки отпрессованы на прессе, изготовлена проволока 2,0 мм. Плоские слитки после фрезерования прокатаны на стане “Дуо” на листы толщиной 2,0 мм. Листы порезаны на мерные заготовки, часть из которых сварена методом аргоно-дуговой сварки встык с использованием в качестве присадки проволоки 2,0 мм. Исследованы механические свойства листовых заготовок и сварных соединений предлагаемого сплава, сплава-прототипа в соответствии с ГОСТ 1497-76, ГОСТ 6996-76. В таблице 1 представлены химический состав и механические свойства предлагаемого сплава и сплава-прототипа при комнатной и повышенных температурах. В таблице 2 – сравнительные свойства сварных соединений при использовании предлагаемого сплава и сплава-прототипа в качестве основного материала, а также в качестве присадочного материала. Полученные результаты подтверждают преимущества предлагаемого сплава.
По значениям предела прочности в поперечном направлении предлагаемый сплав на 40% превосходит сплав-прототип, по значениям предела текучести – на 40-45%. Предлагаемый сплав обладает более высоким запасом пластичности (в 1,5-2 раза), чем сплав-прототип. Анизотропия основных механических свойств предлагаемого сплава не превышает 5-15%, в то время как у сплава-прототипа она составляет примерно 28-30%. При повышенных температурах предел прочности у предлагаемого сплава выше, чем у сплава-прототипа: при 200°С – на 24-27% и при 300°С – на 18-20%. Преимущества предлагаемого сплава наглядно подтверждаются также при сравнении основных характеристик сварных соединений: как по пределу прочности на 10-15%, так и по величине угла загиба сварных соединений 1,7-2 раза. При использовании сплавов в качестве присадки значения крит., характеризующие трещиностойкость сплавов, у предлагаемого сплава в 3,0-3,5 раза выше, чем у сварного соединения сплава-прототипа. Применение предлагаемого сплава для изготовления свариваемых и несвариваемых нагруженных деталей планера самолетов, ракет, в том числе в качестве панелей обслуживания, приборных панелей, качалок, кронштейнов, деталей управления, работающих при комнатной и повышенных (до 300°С) температурах, а также для производства деталей спортивных велосипедов, автомобилей, мотоциклов, спортивного инвентаря, обеспечит повышение качества, увеличение ресурса и надежности этих изделий.
Формула изобретения
1. Сплав на основе магния, содержащий цинк, цирконий, кальций, РЗМ, отличающийся тем, что он дополнительно содержит кадмий, кремний, бериллий, а в качестве РЗМ – иттрий, гадолиний и/или диспрозий, при следующем соотношении компонентов, мас.%:
2. Изделие из сплава на основе магния, отличающееся тем, что оно выполнено из сплава по п.1.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||