Патент на изобретение №2293138
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ ПАЛЛАДИЯ И ЕГО СПЛАВОВ НА МЕТАЛЛИЧЕСКИЕ ДЕТАЛИ
(57) Реферат:
Изобретение относится к области нанесения покрытий из палладия и его сплавов с благородными (серебро, золото, платина, родий, рутений) и некоторыми неблагородными металлами (медь, сурьма, висмут, олово, свинец, никель) и может быть использовано в микроэлектронике, электротехнике, в электрохимических аппаратах и устройствах. Способ включает обезжиривание, химическое травление и/или активирование, промывку и обработку деталей металлирующим раствором нецианистых солей осаждаемых металлов – нитратов, галогенидов в органическом растворителе из группы алкилфосфатов, серосодержащих растворителей, уксусной кислоты и/или пропиленкарбоната при температуре 20-150°С, при этом в металлирующий раствор дополнительно вводят добавку хлорида, бромида или роданида аммония и добавку одноатомного или многоатомного спирта. Технический результат: создание нового способа, позволяющего наносить на металлические детали тонкослойные адгезионно-прочные покрытия из палладия и его сплавов, регулировать толщину покрытия, его физико-химические свойства и повысить устойчивость к износу при различных видах воздействия. 1 з.п. ф-лы, 2 табл.
Изобретение относится к нанесению покрытий из палладия и его сплавов с благородными (серебро, золото, платина, родий, рутений) и некоторыми неблагородными металлами (сурьма, висмут, свинец, олово, никель, медь) на детали из меди и медных сплавов, никеля и его сплавов, черных, малоуглеродистых, легированных и нержавеющих сталей. Такие покрытия находят применение в микроэлектронике (печатные платы), в электротехнике (контакты, коммутирующие элементы, провода), в электрохимических аппаратах и устройствах (аноды, биполярные пластины и сепараторы электролизеров). Тонкослойное палладиевое покрытие используется также в качестве промежуточного барьерного слоя, тормозящего диффузию металлов подложки и покрытия, например меди из подложки в золотое или серебряное покрытие. Тонкослойные покрытия из палладия и его сплавов представляют интерес для активно разрабатываемых в настоящее время устройств водородной энергетики, в частности термодиффузионных фильтров очистки водорода. Наиболее распространенным методом нанесения покрытий из палладия и его сплавов на металлические детали является электроосаждение (гальванический метод) из водных растворов электролитов [Н.Ф.Мелащенко. Гальванические покрытия благородными металлами. Справочник. М., Машиностроение, 1993]. Разработаны также водные электролиты для электроосаждения сплавов палладий-никель, палладий-кобальт, палладий-индий, нашедших применение в технике. Недостатком гальванического палладирования из водных растворов является то, что совместно с электроосаждением покрытия на катоде выделяется водород, при этом палладий наводораживается, что приводит к внутренним напряжениям в покрытии, растрескиванию, пористости и ухудшению физико-механических свойств покрытия. Кроме того, гальванический метод не применим для нанесения покрытия на детали сложной формы, имеющие внутренние поверхности, где электрическое поле отсутствует, а также для локальной металлизации, где затруднена подводка электрического контакта. Известны бестоковый химический (автокаталитический) метод палладирования из водных растворов с использованием восстановителей (производные боргидридов, гипофосфит). [Н.Ф.Мелащенко. Гальванические покрытия благородными металлами. Справочник. М., Машиностроение, 1993; С.Я.Грилихес, К.И.Тихонов. Электролитические и химические покрытия. Ленинград, Химия, 1990]. Недостатком этого способа является низкая химическая стабильность растворов химического восстановления, что наряду с низкой скоростью нанесения и наводораживанием покрытия препятствует его широкому технологическому использованию. Кроме того, полученные этим способом палладиевые покрытия содержат до 15% примеси бора или фосфора, что снижает пластичность покрытий и резко сужает их область применения. Известен способ нанесения покрытия из благородных металлов на металлические детали [пат. РФ №2112077]. Согласно патенту процесс осуществляют в неводных средах, что позволяет улучшить адгезию покрытия к подложке, а также избежать наводораживания и связанного с ним ухудшения физико-механических свойств покрытия (напряжения в покрытии, растрескивание). Способ нанесения покрытия из благородных металлов включает обезжиривание, химическое травление и/или активирование, промывку и обработку деталей металлирующим раствором. Существенными признаками способа являются обработка подготовленных металлических деталей при 20-150°С металлирующим раствором нецианистых солей металлов – нитратов, галогенидов в органическом растворителе из группы алкилфосфатов, например триметилфосфат, трибутилфосфат, серусодержащих растворителей, например сульфолан, и/или уксусная кислота, и/или этиленгликоль, и/или пропиленкарбонат. По совокупности существенных признаков данное техническое решение наиболее близко к заявляемому изобретению и принято нами за прототип. Однако способ-прототип не позволяет регулировать толщину покрытия и наносить покрытия из сплавов палладия с другими металлами. Задачей предлагаемого изобретения является создание нового способа, позволяющего наносить на металлические детали тонкослойные адгезионно-прочные покрытия из палладия и его сплавов с благородными и некоторыми неблагородными металлами, регулировать толщину покрытия, его физико-химические свойства и повысить устойчивость к износу при различных видах воздействия. Согласно изобретению для решения данной технической задачи в предлагаемом способе нанесения покрытий из палладия и его сплавов с благородными и неблагородными металлами на металлические детали, включающем операции подготовки деталей, например обезжиривание, химическое травление и/или активирование, промывку и обработку подготовленных деталей металлирующим раствором нецианистых солей осаждаемых металлов, например, нитратов, галогенидов в органическом растворителе из ряда алкилилфосфатов, серусодержащих растворителей, а также уксусной кислоты и/или пропиленкарбоната при температуре 20-150°С, в металлирующий раствор дополнительно вводят добавку хлорида, бромида или роданида аммония и добавку одноатомного или многоатомного спирта, например, этилового, изопропилового, глицерина. Отличительными признаками от способа-прототипа, обеспечивающими достижение задачи изобретения, является введение в состав металлирующего раствора добавки хлорида, бромида или роданида аммония и добавки одноатомного или многоатомного спирта, например этилового, изопропилового или глицерина. Способ с обработкой металлических деталей металлирующим раствором указанного состава неизвестен в научно-технической и патентной литературе и является новым. Предлагаемый способ позволяет реализовать следующие преимущества по сравнению со способом-прототипом. Во-первых, позволяет целенаправленно получать ряд сплавов палладия с благородными и неблагородными металлами, конкретно покрытия из сплавов Pd-Au, Pd-Ag, Pd-Ru, Pd-Pt, Pd-Sb, Pd-Bi, Pd-Pb, т.е. сплавов с различной структурой и свойствами. Рентгенофазовый анализ показал, что сплав Pd-Au (пример 8) имеет структуру твердого раствора, а сплавы Pd-Bi (примеры 13, 14) и Pd-Pb (примеры 15, 16) образуют интерметаллические соединения. Температура плавления сплавов Pd-Pb и Pd-Bi на 300-600°С ниже, чем температура плавления чистого палладия, и это позволяет при термообработке покрытия достичь эффекта «лужения» поверхности детали палладиевым сплавом и получить сплошное беспористое покрытие. При введении золота в сплав с палладием на 25-30% повышается пластичность покрытия, а при введении рутения на 10-15% повышается устойчивость к электроискровой эрозии электроконтактов. Покрытие на латунном электроконтакте из сплава серебра с 1-2% палладия при толщине 0,2-0,3 микрометра было испытано на специализированном предприятии и выдержало стандартные испытания на контактное сопротивление, влагостойкость, коррозионную устойчивость в соляном тумане и ресурс работы при многократном замыкании-размыкании. Во-вторых, предлагаемый способ позволяет получать палладиевое покрытие, не содержащее примесей бора и фосфора, толщиной от 0,01 до 1 микрометра, что необходимо для решения целого ряда технических задач, например создания эффективных термодиффузионных фильтров водорода, защитных покрытий для деталей электролизеров и др. В целом предлагаемое изобретение за счет введения указанных добавок солей и спиртов расширяет номенклатуру палладиевых покрытий, позволяет регулировать их толщину и другие технические характеристики покрытий, например устойчивость к различным видам износа, что и составляет технический результат изобретения. Для каждого конкретного варианта в зависимости от металла подложки, требуемых толщин и состава покрытия подбирают состав металлирующего раствора и режим нанесения покрытия. В табл.2 приводим данные способа-прототипа и конкретные примеры осуществления предлагаемого способа. Пример 1. Металлические детали обезжиривают стандартными приемами [Гальванотехника. Справочник., М., «Металлургия», 1987] либо с помощью органического растворителя, либо химическим или электрохимическим обезжириванием, промывают водой, затем в спирте и в органическом растворителе, на основе которого составлен металлирующий раствор. После промывок деталь обрабатывают металлирующим раствором при температуре 20-150°С либо погружением в корзинах, либо в барабанах, либо с помощью иных подходящих технологических приемов. Как подготовительные операции, так и обработку металлирующим раствором проводят при механическом перемешивании раствора или при воздействии вибрации или ультразвуковых колебаний. Готовое покрытие после промывки и сушки может быть обработано известными приемами, улучшающими свойства покрытия, а именно механической обработкой, например галтовкой стеклянными или стальными шариками, крацеванием латунными или серебряными щетками, а также термической или химической (например, хроматирование) обработками. Конкретные примеры получения покрытий из палладия и его сплавов на различные металлические подложки приведены в табл.1 и 2. Пример 2. Нанесение покрытия из сплава палладий-серебро на фигурный медный диск диаметром 200 и толщиной 2 мм. Технологический процесс описан в табл.1
Получают светлое однородное покрытие, адгезионная прочность 101 кг/см2. Покрытие содержит по данным рентгеноспектрального анализа 60 мас.% палладия и 40% серебра. Толщина покрытия 0,1-0,2 мкм. Из табл.2 видно (см. примеры 2-5), что, вводя добавки хлорида, бромида или роданида аммония, а также добавки этилового спирта или глицерина, удается регулировать толщину палладиевого покрытия от 0,1 до 1,0 микрометра. Примеры 8, 12, 13, 15 показывают, что введение в металлирующий раствор добавки глицерина позволяет также увеличить толщину покрытия сплавами палладий-рутений до 0,4, палладий-висмут до 0,8 и палладий-свинец до 0,9-1,0 микрометра.
Формула изобретения
1. Способ нанесения покрытия из палладия и его сплавов на металлические детали, включающий обезжиривание, химическое травление и/или активирование, промывку и обработку деталей металлирующим раствором нецианистых солей осаждаемых металлов – нитратов, галогенидов в органическом растворителе из группы алкилфосфатов, серосодержащих растворителей, уксусной кислоты и/или пропиленкарбоната при температуре 20-150°С, отличающийся тем, что в металлирующий раствор дополнительно вводят добавку хлорида, бромида или роданида аммония и добавку одноатомного или многоатомного спирта. 2. Способ по п.1, отличающийся тем, что в металлирующий раствор в качестве добавки одноатомного или многоатомного спирта вводят этиловый спирт, изопропиловый спирт или глицерин.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||