Патент на изобретение №2292961

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2292961 (13) C2
(51) МПК

B07B9/02 (2006.01)
B07B11/00 (2006.01)
B02C23/08 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.12.2010 – действует

(21), (22) Заявка: 2004137490/03, 22.12.2004

(24) Дата начала отсчета срока действия патента:

22.12.2004

(43) Дата публикации заявки: 10.06.2006

(46) Опубликовано: 10.02.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2156661 C1, 27.05.1997. SU 1764697 A1, 30.09.1992. SU 42003 А, 31.03.1935. RU 2114697 C1, 10.07.1998. RU 2057600 C1, 10.04.1996. RU 2023035 C1, 15.11.1994. RU 2145909 C1, 27.02.2000. RU 2130340 C1, 20.05.1999. RU 2058826 C1, 27.04.1996. UA 53595 А, 15.01.2003. GB 1382561 A, 05.02.1975. Справочник по обогащению руд, Подготовительные процессы, под ред. БОГДАНОВА О.С., Москва, Недра, 1982, с.135, с.129.

Адрес для переписки:

220019, г.Минск, ул. Горецкого, 21, кв.50, а/я 185, С.В. Ласанкину

(72) Автор(ы):

Ласанкин Сергей Викторович (BY)

(73) Патентообладатель(и):

Ласанкин Сергей Викторович (BY)

(54) СПОСОБ СУХОГО ОБОГАЩЕНИЯ МИНЕРАЛЬНОГО СЫРЬЯ

(57) Реферат:

Изобретение относится к горнорудной и металлургической промышленности, а именно к способу сухого обогащения минерального сырья, в том числе слабомагнитных и немагнитных руд. Способ сухого обогащения минерального сырья включает стадийное дробление и воздушную классификацию в восходящем потоке. Перед воздушной классификацией производят измельчение обогащаемой смеси в валках, для этого значение максимального контактного напряжения на валках регулируют посредством изменения угла взаимодействия материала с валками на входе в очаг деформации таким образом, что: если n>x, то nm>x, где n – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение извлекаемого (полезного) компонента смеси (Па), Рm – максимальное нормальное контактное напряжение на валках (Па); x – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение компонентов пустой породы (хвостов) (Па), а если n<x, то кm>n. Операции измельчения в валках и воздушной классификации последовательно повторяются несколько раз с соответствующими настройками в зависимости от количества полезных компонентов, извлекаемых из обогащаемой смеси. Воздушная классификация в восходящем потоке проводится в центробежных классификаторах с возможностью создания центробежного движения с помощью ротора или с помощью неподвижных регулируемых лопаток. Технический результат – повышение эффективности обогащения минерального сырья. 1 з.п. ф-лы.

Изобретение относится к горнорудной и металлургической промышленности, а именно к способу сухого обогащения минерального сырья, в том числе слабомагнитных и немагнитных руд.

Известен способ магнитного обогащения слабомагнитных руд, [1] включающий измельчение, классификацию и магнитную сепарацию. Недостатком данного способа является низкий процент извлечения полезного компонента смеси в концентрат.

Наиболее близким по достигаемому эффекту является способ сухого обогащения слабомагнитного минерального сырья [2], включающий стадийное дробление и воздушную классификацию в восходящем потоке.

Недостатком данного метода является низкая эффективность и узкая направленность способа только на магнитные и слабомагнитные материалы. Причина – плохая подготовка материала к воздушной классификации. Использование на последней стадии измельчения центробежно-ударного дробления приводит к целому ряду существенных недостатков данного способа. Во-первых, в процессе дробления сростков раскрытие полезного компонента носит случайный характер, что приводит к появлению фракции, требующей дополнительного размола и повторной классификации. Во-вторых, в процессе центробежно-ударного дробления материал необходимо разогнать до больших скоростей, что приводит к повышенному расходу энергии и металла на тонну готовой продукции. В-третьих, материал размалывается в одном корпусе, и часть уже размолотого продукта остается продолжительное время в зоне измельчения, тормозя процесс и снижая производительность.

Задачей изобретения является устранение присущих известному способу недостатков, а также расширение сферы применения способа сухого обогащения на более широкий круг материалов, в том числе на немагнитные материалы и металлургические отходы.

Технический результат достигается тем, что в способе сухого обогащения минерального сырья, включающем стадийное дробление и воздушную классификацию в восходящем потоке, согласно изобретению перед воздушной классификацией производят измельчение обогащаемой смеси в валках, для этого значение максимального контактного напряжения на валках регулируют посредством изменения угла взаимодействия материала с валками на входе в очаг деформации таким образом, что: если n>x, то nm>x, где n – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение извлекаемого (полезного) компонента смеси (Па), Pm – максимальное нормальное контактное напряжение на валках (Па); x – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение компонентов пустой породы (хвостов) (Па), а если n<x, то к>Pm>n, при этом операции измельчения в валках и воздушной классификации последовательно повторяются несколько раз с соответствующими настройками в зависимости от количества полезных компонентов, извлекаемых из обогащаемой смеси, а воздушная классификация в восходящем потоке проводится в центробежных классификаторах с возможностью создания центробежного движения с помощью ротора или с помощью неподвижных регулируемых лопаток.

Перед измельчением в валковой мельнице обогащаемую смесь сушат.

Для решения поставленной задачи на последней стадии измельчения продукта предлагается использовать валковую мельницу с гладкими валками. Конструкция мельницы должна позволять регулировать нормальное контактное напряжение на валках в очаге деформации. Данные регулировки можно осуществить следующими способами: изменять жесткость валкового узла, связав между собой подушки валков элементом с управляемой жесткостью и регулируя угол взаимодействия материала с валками на входе в очаг деформации.

Таким образом, появляется возможность в зависимости от прочностных характеристик компонентов, входящих в состав обогащаемой смеси, проводить избирательное измельчение.

В процессе помола смесь проходит через валковое пространство, в котором весь материал подвергается воздействию нормальных контактных напряжений. Величина напряжений изменяется от 0 в начале очага деформации, достигает своего максимума в нейтральном сечении и опять становится равной 0 на выходе из валков [3, с.41]. В результате такого воздействия измельчаются только те компоненты смеси, предел прочности которых меньше максимального нормального контактного напряжения. Следовательно, если n>х, то n>Pm>x, где n – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение извлекаемого компонента смеси, Рm – максимальное нормальное контактное напряжение на валках; x – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение ближайшего по твердости к n компонента смеси, входящего в пустую породу. Если n<х, то параметры настройки должны быть следующими x>Pm>n.

Следовательно, становится возможным последовательно извлекать компоненты из смеси по мере роста их прочностных характеристик.

Реализована такая схема может быть набором классификаторов и мельниц, соответствующим образом настроенных, имеющих индивидуальную систему очистки воздушного потока и соединенных воздуховодами в соответствии с программой обогащения данной смеси.

Пример 1

Рассмотрим порядок обогащения смеси из пяти компонентов, в которой нам надо извлечь первый и четвертый компонент. Допустим, что пределы прочности или экспериментально установленные напряжения, при которых наступает разрушение этих компонентов, удовлетворяют следующему неравенству: n1>2>3>n4>5, где n1, 2, 3, n4, 5 – пределы прочности или экспериментально установленные напряжения, при которых наступает разрушение соответствующих компонентов смеси. Настраиваем валковую мельницу, чтобы максимальное нормальное контактное напряжение удовлетворяло неравенству n4>Pm5>5. В процессе измельчения в очаге деформации возникнет напряжение Рm5>5 и, следовательно, 5-й компонент будет измельчаться. В это же время будут измельчаться и оставшиеся после предварительного дробления не размолотые куски материала, т.к. твердость сростков, как правило, меньше твердости минералов. Следует заметить, что в процессе измельчения более твердые компоненты смеси будут способствовать размолу менее твердых компонентов, создавая неоднородность в очаге деформации. Как показывают экспериментальные данные, объемная степень измельчения может достигать , где н – объем частиц до измельчения, k – объем частиц после измельчения. Что дает возможным достаточно эффективно отделить помолотый компонент воздушным потоком, а оставшуюся смесь собрать в приемном бункере классификатора.

Для извлечения четвертого (полезного) компонента смеси изменим настройки 3m4>n4. Таким образом, в процессе измельчения в очаге деформации возникнет напряжение Pm4>n4, следовательно, 4-й компонент измельчится. В процессе воздушной классификации он будет отделяться от смеси, выноситься потоком и осаждаться в системе очистки воздуха.

Для извлечения первого компонента настроим узел деформации так, чтобы n1>Pm2>2. Таким образом, в очаге деформации возникнет напряжение Рm2>2>3, и 2-й, 3-й компоненты измельчатся. В процессе классификации они будут отделены воздушным потоком, а 1-й, обогащаемый компонент окажется в приемном бункере.

Таким образом, мы извлекли 4-й компонент. Он был осажден в системе воздушной очистки после второго классификатора. И извлекли 1-й компонент, который был собран в приемном бункере третьего классификатора.

Пример 2

Шлак, полученный при выплавке латуни Л-62, измельчался на первой стадии в щековой дробилке, затем в валковой мельнице, причем параметры измельчения регулировалось таким образом, чтобы максимальное нормальное контактное напряжение в валках находилось в диапазоне л62m>шл, где л62=362 (Н/мм2) – предел прочности для Л-62, шл=3 (Н/мм2) – экспериментально полученная величина, соответствующая напряжению, при котором произошло достаточное измельчение неметаллической составляющей шлака. Исходя из полученных данных было принято Pm=10 (Н/мм2).

После измельчения материал подвергался воздушной классификации. В процессе воздушной сепарации неметаллическая составляющая шлака, переведенная на предыдущем этапе в пылевидную фракцию, была удалена воздушным потоком. В результате в бункере классификатора был собран концентрат, который представлял собой смесь частиц металла размером (0,3-15) мм. Из полученного концентрата были отобраны пробы для проведения балансовой плавки. Результаты показали, что с 1000 г концентрата было получено 855 г металла.

Очевидно, что предложенным способом возможно обогащение немагнитных материалов до высоких концентраций.

Следует заметить, что предложенному способу не свойственны перечисленные выше недостатки прототипа, связанные с центробежно-ударным способом дробления. Во-первых, в предлагаемом способе скорости движения материала в узле деформации на порядки меньше, чем при центробежно-ударном способе дробления, поэтому расход энергии и износ инструмента значительно сократится. Во-вторых, помолотый материал не остается продолжительное время в зоне измельчения, а отводится сразу, что также улучшает экономику процесса.

В частных воплощениях изобретения для разделения компонентов смеси с размерами частиц, близких к 10 мкм, используют центробежные классификаторы. Это вызвано тем, что при низких скоростях восходящего патока возможно использование только центробежных классификаторов [4, стр.70]. В свою очередь, центробежные классификаторы делят на два типа: статически центробежные классификаторы, в которых поток переводится в центробежное движение с помощью неподвижных, регулируемых лопаток, и динамически центробежные классификаторы, где поток переводится в центробежное движение с помощью специального ротора. Выбор типа классификатора производится в зависимости от заданного размера отделяемых частиц и аэродинамических характеристик установки.

Также в частных воплощениях изобретения перед измельчением в валках материал сушат. Целесообразно применять данную операцию в случаях, когда необходимо извлечь материал из глины (влажной, вязкой среды). В процессе сушки глина твердеет, а при измельчении в валках она дробится и затем удаляется из классификатора воздушным потоком.

Источники информации

1. SU 1694226.

2. RU 2156661.

3. Ложечников Е.Б. Прокатка в порошковой металлургии. М.: Металлургия, 1987, с.41.

4. Мизонов В.Е., Ушаков С.Г. Аэродинамическая классификация порошков М.: Химия, 1989, с.70-72.

Формула изобретения

1. Способ сухого обогащения минерального сырья, включающий стадийное дробление и воздушную классификацию в восходящем потоке, отличающийся тем, что перед воздушной классификацией производят измельчение обогащаемой смеси в валках, для этого значение максимального контактного напряжения на валках регулируют посредством изменения угла взаимодействия материала с валками на входе в очаг деформации таким образом, что если n>x, то nm>x, где n – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение извлекаемого (полезного) компонента смеси (Па), Рm – максимальное нормальное контактное напряжение на валках (Па); x – предел прочности или экспериментально установленное напряжение, при котором наступает разрушение компонентов пустой породы (хвостов) (Па), а если n<x, то кm>n, при этом операции измельчения в валках и воздушной классификации последовательно повторяются несколько раз с соответствующими настройками, в зависимости от количества полезных компонентов, извлекаемых из обогащаемой смеси, а воздушная классификация в восходящем потоке проводится в центробежных классификаторах с возможностью создания центробежного движения с помощью ротора или с помощью неподвижных регулируемых лопаток.

2. Способ по п.1, отличающийся тем, что перед измельчением в валковой мельнице обогащаемую смесь сушат.

Categories: BD_2292000-2292999