Патент на изобретение №2291918

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2291918 (13) C1
(51) МПК

C25D11/26 (2006.01)
A61F2/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.12.2010 – действует

(21), (22) Заявка: 2005116663/02, 31.05.2005

(24) Дата начала отсчета срока действия патента:

31.05.2005

(46) Опубликовано: 20.01.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2221904 C1, 20.01.2004. RU 2154463 C1, 20.08.2000. RU 2159094 С1, 20.11.2000.

Адрес для переписки:

634021, г.Томск, пр. Академический, 2/1, ИФПМ СО РАН, патентный отдел

(72) Автор(ы):

Шашкина Галина Алексеевна (RU),
Шаркеев Юрий Петрович (RU),
Колобов Юрий Романович (RU),
Карлов Анатолий Викторович (RU)

(73) Патентообладатель(и):

Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) (RU)

(54) КАЛЬЦИЙ-ФОСФАТНОЕ ПОКРЫТИЕ НА ТИТАНЕ И ТИТАНОВЫХ СПЛАВАХ И СПОСОБ ЕГО НАНЕСЕНИЯ

(57) Реферат:

Изобретение относится к медицинской технике, а именно к технологии формирования покрытий на поверхности имплантатов, изготовленных из титана, находящегося в рекристаллизованном и в наноструктурном состоянии. Покрытие содержит, мас.%: титанат кальция 7-9; пирофосфат титана 16-28; кальций-фосфатные соединения – остальное. Способ включает анодирование имплантата импульсным током в условиях искрового разряда в растворе фосфорной кислоты, содержащем гидроксиапатит и карбонат кальция, при этом анодирование ведут импульсным током со следующими параметрами: время импульса 50-200 мкс; частота следования импульсов 50-100 Гц; начальная плотность тока 0,2-0,25 А/мм2; конечное напряжение 100-300 В. Технический результат: получение покрытия, составом аналогичным составу костной ткани с высоким содержанием кальция, обладающего хорошими остеоиндуктивными и механическими свойствами, толщиной от 40 до 80 мкм. 2 н. и 5 з.п. ф-лы.

Изобретение относится к медицинской технике, а именно к технологии формирования покрытий на поверхности имплантатов, изготовленных из титана, находящегося в рекристаллизованном и в наноструктурном состоянии. Данный материал может быть использован в травматологии, ортопедии и стоматологии.

Известно покрытие на имплантат из титана и его сплавов и способ его нанесения (патент RU 2154463, А 61 К 6/033, A 61 N 1/32, опубл.2000.08.20). Покрытие содержит оксид титана и дополнительно содержит кальций-фосфатные соединения, взятые в определенном количественном соотношении. Способ нанесения заключается в анодировании титана и его сплавов импульсным током в условиях искрового разряда, при этом процесс ведут в насыщенном растворе гидроксиапатита (ГА) в фосфорной кислоте концентрацией 5-20% или 3-5% суспензии гидроксиапатита дисперсностью менее 100 мкм в этом насыщенном растворе.

Это биокерамическое покрытие содержит всего одно кальций-фосфатное соединение. Данное покрытие обладает остеоиндуктивными свойствами и не вызывают нагноения, воспаления, аллергической реакции. Недостатком данного покрытия является низкое содержание кальция в нем. Недостатком данного способа является то, что при его реализации получают покрытие толщиной до 30 мкм.

Известен способ нанесения покрытия на имплантат из титана и его сплавов (патент RU 2221904, C 25 D 11/26, A 61 F 2/02, опубл. 2004.01.20), включающий анодирование имплантата импульсным или постоянным током в условиях искрового разряда с частотой следования импульсов 0,5-10,0 Гц в растворе фосфорной кислоты в течение 10-30 мин при постоянном перемешивании, причем анодирование ведут при напряжении 90-100 В и 20-35°С в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния, или в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния и дополнительно 5-10% суспензии гидроксиапатита дисперсностью менее 70 мкм для создания суспензии. Недостатком покрытия, полученного этим способом, является также низкое содержание кальция в нем. Также недостатком этого способа является то, что при его реализации получают покрытие толщиной не более 30 мкм.

Задачей предлагаемого изобретения является получение кальций-фосфатного покрытия на титане и титановых сплавах и разработка способа его нанесения. При реализации данного изобретения получают покрытие, составом аналогичным составу костной ткани с высоким содержанием кальция, обладающее остеоиндуктивными свойствами, высокими механическими свойствами. Способ, предлагаемый в данном изобретении, позволяет получать покрытие толщиной от 40 до 80 мкм.

Указанный технический результат достигается тем, что кальций-фосфатное покрытие на титане и титановых сплавах, содержащее кальций-фосфатные соединения дополнительно содержит титанат кальция и пирофосфат титана, при следующем соотношении компонентов, мас.%:

титанат кальция – 7-9

пирофосфат титана – 16-28

кальций-фосфатные соединения – остальное.

При этом покрытие в качестве кальций-фосфатных соединений содержит -трикальцийфосфат и двойной фосфат титана-кальция при следующем соотношении компонентов, мас.%:

титанат кальция – 7-9

пирофосфат титана – 16-28

-трикальцийфосфат – 20-30

двойной фосфат титана-кальция – 49-55.

Способ нанесения кальций-фосфатного покрытия на титан и титановые сплавы, включающий анодирование имплантата импульсньм током в условиях искрового разряда в растворе фосфорной кислоты, содержащем гидроксиапатит, заключается в том, что анодирование ведут импульсным током со следующими параметрами: время импульса 50-200 мкс; частота следования импульсов 50-100 Гц; начальная плотность тока – 0,2-0,25 А/мм2; конечное напряжение 100-300 В, при этом раствор фосфорной кислоты дополнительно содержит карбонат кальция.

При этом используют раствор 15-20% фосфорной кислоты.

При этом концентрация гидроксиапатита составляет 50-70 г/л.

При этом используют карбонат кальция с концентрацией 80-150 г/л.

При этом в раствор фосфорной кислоты сначала вводят карбонат кальция, а затем гидроксиапатит.

Поставленная задача решается тем, что процесс формирования биокерамического покрытия ведут импульсным током в условиях микроплазменных разрядов в гетерогенном электролите, в котором в качестве дисперсионной среды используется раствор фосфорной кислоты 15-20%, а в качестве дисперсной фазы – смесь порошков карбоната кальция и гидроксиапатита. Предложенный состав электролита позволяет получить биокерамическое покрытие, в состав которого входит -трикальцийфосфат (один из основных компонентов костной ткани).

Авторами предложен способ нанесения биокерамического покрытия на титан и его сплавы, в том числе находящиеся в наноструктурном состоянии, позволяющий получить новый не известный ранее технический результат, заключающийся в получении биокерамического покрытия с преобладающим содержанием фосфатов кальция, в состав созданного биокерамического покрытия входят также титанаты кальция. Данное покрытие обладает остеоиндуктивньми свойствами и повышенным сродством к костной ткани благодаря содержанию -трикальцийфосфат.

Изобретение осуществляют следующим образом. Приготавливают 15-20% раствор ортофосфорной кислоты. Затем медленно при постоянном перемешивании вводят карбонат кальция 80-150 г/л. После окончания процесса газовыделения в электролит при постоянном перемешивании вводят ГА 50-70 г/л. Подготовленный к нанесению покрытия имплантат помещают в раствор. Через раствор пропускают импульсный ток со следующими характеристиками: время импульса 50-200 мкс; частота следования импульсов 50-100 Гц; начальная плотность тока 0,2-0,25 А/мм2; конечное напряжение 100-300 В. Процесс ведут при постоянном перемешивании в течение 5-60 мин, при этом максимальная толщина формируемого покрытия составляет 80 мкм.

Для лучшего понимания сути изобретения предлагаем следующие конкретные примеры.

Пример 1.

Приготавливают 15% раствор фосфорной кислоты. Затем вводят порошок карбоната кальция 80 г/л. После окончания газовыделения добавляют ГА 70 г/л. Приготовленный имплантат погружают в ванну с электролитом. Через раствор пропускают импульсный ток со следующими характеристиками: время импульса 50 мкс; частота следования импульсов 100 Гц; начальная плотность тока 0,2 А/мм2; конечное напряжение 300 В. Формирование покрытия ведут в течение 5 мин под воздействием импульсного тока с указанными выше характеристиками. Толщина полученного покрытия составляет 40 мкм.

Пример 2.

Приготавливают 20% раствор фосфорной кислоты. Затем вводят порошок карбоната кальция 100 г/л. После окончания газовыделения добавляют ГА 60 г/л. Приготовленный имплантат погружают в ванну с электролитом. Через раствор пропускают импульсный ток со следующими характеристиками: время импульса 200 мкс; частота следования импульсов 50 Гц; начальная плотность тока 0,25 А/мм2; конечное напряжение 200 В. Формирование покрытия ведут в течение 30 мин. Толщина полученного покрытия составляет 60 мкм.

Пример 3.

Приготавливают 18% раствор фосфорной кислоты. Затем вводят порошок карбоната кальция 150 г/л. После окончания газовыделения добавляют ГА 50 г/л. Имплантат погружают в ванну с электролитом. Через раствор пропускают импульсный ток со следующими характеристиками: время импульса 100 мкс; частота следования импульсов 80 Гц; начальная плотность тока 0,25 А/мм2; конечное напряжение 100 В. Формирование покрытия ведут в течение 60 мин. Толщина полученного покрытия составляет 80 мкм.

Кальций-фосфатные покрытия на титане и его сплавах, полученные заявляемым способом, прошли медико-биологическое тестирование.

Формула изобретения

1. Кальций-фосфатное покрытие на титане и титановых сплавах, содержащее кальций-фосфатные соединения, отличающееся тем, что оно дополнительно содержит титанат кальция и пирофосфат титана при следующем соотношении компонентов, мас.%:

Титанат кальция 7-9
Пирофосфат титана 16-28
Кальций-фосфатные соединения Остальное

2. Покрытие по п.1, отличающееся тем, что оно в качестве кальций-фосфатных соединений содержит -трикальцийфосфат и двойной фосфат титана-кальция при следующем соотношении компонентов, мас.%:

Титанат кальция 7-9
Пирофосфат титана 16-28
-Трикальцийфосфат 20-30
Двойной фосфат титана-кальция 49-55

3. Способ нанесения кальций-фосфатного покрытия на имплантат из титана и титановых сплавов, включающий анодирование имплантата импульсным током в условиях искрового разряда в растворе фосфорной кислоты, содержащем гидроксиапатит, отличающийся тем, что анодирование ведут импульсным током со следующими параметрами: время импульса 50-200 мкс; частота следования импульсов 50-100 Гц; начальная плотность тока 0,2-0,25 А/мм2; конечное напряжение 100-300 В, а раствор фосфорной кислоты дополнительно содержит карбонат кальция.

4. Способ по п.3, отличающийся тем, что используют раствор 15-20%-ной фосфорной кислоты.

5. Способ по п.3, отличающийся тем, что используют гидроксиапатит с концентрацией 50-70 г/л.

6. Способ по п.3, отличающийся тем, что используют карбонат кальция с концентрацией 80-150 г/л.

7. Способ по п.3, отличающийся тем, что в раствор фосфорной кислоты сначала вводят карбонат кальция, а затем гидроксиапатит.

Categories: BD_2291000-2291999