Патент на изобретение №2291422

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2291422 (13) C1
(51) МПК

G01N31/22 (2006.01)
G01N21/76 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.12.2010 – прекратил действие

(21), (22) Заявка: 2005134748/04, 09.11.2005

(24) Дата начала отсчета срока действия патента:

09.11.2005

(46) Опубликовано: 10.01.2007

(56) Список документов, цитированных в отчете о
поиске:
ТИХОМИРОВА Т.И., КУЗНЕЦОВ М.В.,ФАДЕЕВА В.И, ИВАНОВ В.М. Журнал аналитической химии, 2000, т.55, №8, с.816-820. SU 1682866 A1, 07.10.1991. RU 2013766 C1, 30.05.1994. RU 2201592 C2, 27.03.2003. RU 2223488 С1, 10.02.2004. RU 2253864 C1, 10.06.2005.

Адрес для переписки:

660041, г.Красноярск, пр-т Свободный, 79, КрасГУ, Отдел интеллектуальной собственности

(72) Автор(ы):

Лосев Владимир Николаевич (RU),
Буйко Елена Васильевна (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования “Красноярский государственный университет” (RU)

(54) СПОСОБ ОПРЕДЕЛЕНИЯ МЕДИ

(57) Реферат:

Изобретение относится к области аналитической химии элементов, а именно к методам определения меди, и может быть использовано при ее определении в технологических растворах, минеральных кислотах, природных и техногенных водах. В способе определения меди, включающем приготовление раствора меди (II), переведение ее в комплексное соединение сорбентом и измерение коэффициента диффузного отражения, в качестве сорбента используют силикагель, химически модифицированный меркаптопропильными группами, при этом обрабатывают сорбент с сорбированной медью 1·10-5-1·10-4 М раствором тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде и измеряют коэффициент диффузного отражения поверхностного комплекса меди (I) при 540 нм. Интенсивность окраски и значения коэффициента диффузного отражения постоянны при использовании 1·10-5-1·10-4 М растворов тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде. Достигается снижение предела обнаружения меди и расширение диапазона ее определения. 3 табл.

Изобретение относится к области аналитической химии элементов, а именно к методам определения меди, и может быть использовано при ее определении в технологических растворах, минеральных кислотах, природных и техногенных водах.

Для определения меди в объектах различного вещественного состава широко используется фотометрический метод, характеризующийся достаточно высокой чувствительностью и селективностью, простотой выполнения определения и не требующий дорогостоящего оборудования.

Одним из широко используемых приемов снижения пределов обнаружения фотометрическим методом и повышения селективности определения меди в объектах различного вещественного состава является сочетание предварительного сорбционного концентрирования меди сорбентами различной природы и последующее ее фотометрическое определение непосредственно в фазе сорбента. Для сорбционно-фотометрического определения необходимо выполнение условия образования окрашенного соединения меди с функциональными группами сорбента или смешанно лигандного соединения, содержащего в своем составе функциональные группы, ковалентно закрепленные на поверхности силикагеля, и другие лиганды.

Способ предусматривает проведение следующих операций:

– смешение растворов дитиокарбамината натрия и нитрата свинца (II), экстракцию хлороформом дитиокарбамината свинца;

– для приготовления модифицированного сорбента проводили обработку хлороформным раствором дитиокарбамината свинца кремнезема – силохром С-80 и выдерживание раствора в течение 1-2 суток для полного испарения хлороформа;

– добавление к воде объемом 500 мл 0,1 М хлороводородную кислоту до рН 2;

– внесение 0,3 г модифицированного сорбента;

– интенсивное перемешивание в течение 10 мин;

– перенесение сорбента в кювету и измерение коэффициента диффузного отражения;

– определение содержания меди по градуировочному графику.

К недостаткам способа можно отнести многостадийность, высокий предел обнаружения и узкий диапазон определяемых концентраций меди.

К недостаткам способа можно отнести высокий предел обнаружения, составляющий 4 мкг меди на 0,15 г сорбента при использовании ПАР и 6 мкг на 0,15 г сорбента при использовании пикрамина-Е.

Техническим результатом является снижение предела обнаружения меди и расширение диапазона ее определения.

Указанный технический результат достигается тем, что в способе определения меди, включающем приготовление раствора меди (II), переведение ее в комплексное соединение сорбентом и измерение коэффициента диффузного отражения, новым является то, что в качестве сорбента используют силикагель, химически модифицированный меркаптопропильными группами, при этом обрабатывают сорбент с сорбированной медью 1·10-5-1·10-4 М раствором тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде и измеряют коэффициент диффузного отражения поверхностного комплекса меди (I) при 540 нм.

Сущность способа заключается в том, что находящаяся в растворе с рН 2-8 медь (II) количественно (степень извлечения 99%) извлекается силикагелем, химически модифицированным меркаптопропильными группами. В процессе взаимодействия с меркаптопропильными группами медь (II) восстанавливается до меди (I) и на поверхности сорбента образуются координационные соединения меди (I) с меркаптопропильными группами, не имеющие окраски. В процессе обработки сорбента, содержащего на поверхности медь (I), водно-этанольными растворами тиокетона Михлера происходит координация медью (I) молекул тиокетона Михлера и образование на поверхности сорбента интенсивно окрашенного в красный цвет комплексного смешанно лигандного соединения, имеющего в спектре диффузного отражения интенсивный максимум при 540 нм. Образование интенсивно окрашенного смешанно лигандного комплекса меди на поверхности сорбента происходит быстро, время образования комплекса не превышает 2 мин. Интенсивность окраски и значения коэффициента диффузного отражения постоянны при использовании 1·10-5-1·10-4 М растворов тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде.

Уменьшение или увеличение рН раствора, из которого проводят сорбцию меди (II), уменьшение или увеличение концентрации тиокетона Михлера и концентрации этилового спирта в воде приводят к уменьшению интенсивности окраски сорбента и соответственно к увеличению предела обнаружения меди с использованием тиокетона Михлера (таблицы 1, 2, 3).

В исследуемый раствор с рН 2-8, содержащий медь (II), вносят сорбент – силикагель, химически модифицированный меркаптопропильными группами, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией. К сорбенту приливают 10 мл 1·10-5-1·10-4 М раствора тиокетона Михлера в 50%-ном этаноле, перемешивают 2 мин, сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 540 нм. Предел обнаружения, рассчитанный по 38-критерию, равен 0,1 мкг меди на 0,1 г сорбента. Данное количество меди является той минимальной концентрацией, которую удается достоверно зарегистрировать на данной навеске сорбента по предлагаемой методике на существующих приборах относительно сигнала фона. Высокая скорость установления сорбционного равновесия в статическом режиме (время установления сорбционного равновесия не превышает 5 мин) и высокая степень извлечения (99%) позволяет сконцентрировать и полностью извлечь медь даже из разбавленных растворов в динамическом режиме. Применение динамического режима сорбции позволяет сконцентрировать медь на используемой массе сорбента из больших объемов разбавленных растворов. Так при сорбции меди из 10 мл раствора и последующей обработке 5·10-5 М раствором ТКМ в 50%-ном растворе этилового спирта в воде предел обнаружения меди составляет 0,01 мкг/мл, а при сорбции из 100 мл раствора – 1·10-3 мкг/мл. Таким образом, содержание меди, определяемой по предлагаемой методике в произвольном объеме раствора, должно быть не менее 0,1 мкг. Линейность градуировочного графика сохраняется до 100 мкг на 0,1 г сорбента.

Пример 1 (прототип). В раствор, содержащий 20 мкг меди, вносят сорбент – кремнезем, химически модифицированный иминодиуксусной кислотой, интенсивно перемешивают в течение 5 мин. К сорбенту приливают 2·10-4 М раствор ПАР, перемешивают в течение 5 мин. Раствор сливают, сорбент переносят в кювету и измеряют коэффициент диффузного отражения в области 500-560 нм. Содержание меди находят по градуировочному графику, построенному в аналогичных условиях.

Пример 2 (предлагаемый способ). К 10 мл раствора с рН 2-8, содержащему 1,0 мкг меди, вносят сорбент – силикагель, химически модифицированный меркаптопропильными группами, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией. К сорбенту приливают 10 мл 5,0·10-5 М раствора тиокетона Михлера в 50%-ном этаноле, перемешивают 2 мин, сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 540 нм.

Количество меди находят по градуировочному графику, построенному в аналогичных условиях. Найдено 0,95±0,07 мкг.

Пример 3 (предлагаемый способ). К 10 мл раствора с рН 2-8, содержащему 50 мкг меди, вносят сорбент – силикагель, химически модифицированный меркаптопропильными группами, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией. К сорбенту приливают 10 мл 5,0·10-5 М раствора тиокетона Михлера в 50%-ном этаноле, перемешивают 2 мин, сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 540 нм.

Количество меди находят по градуировочному графику, построенному в аналогичных условиях. Найдено 50±1 мкг.

Пример 4 (предлагаемый способ). 500 мл раствора с рН 5, содержащего 1,0 мкг меди, пропускают через хроматографическую колонку, содержащую 0,1 г сорбента, со скоростью 5 мл/мин. Затем через колонку пропускают 10 мл 5,0·10-5 М раствора тиокетона Михлера в 50%-ном этаноле со скоростью 5 мл/мин.

Сорбент вынимают, помещают в фторопластовую кювету и измеряют коэффициент диффузного отражения при 540 нм.

Количество меди находят по градуировочному графику, построенному в аналогичных условиях. Найдено 1,1±0,1 мкг.

Способ характеризуется простотой выполнения, не требует использования дорогостоящего оборудования, позволяет боле чем в 40 раз снизить предел обнаружения меди по сравнению со способом – прототипом.

Таблица 1.
Влияние рН раствора на величину предела обнаружения меди
Условия проведения
эксперимента
рН
1 2 4 6 8
Предел обнаружения, мкг Cu на 0,1 г сорбента 0,2 0,1 0,1 0,1 0,1
Таблица 2.
Влияние концентрации тиокетона Михлера на величину предела обнаружения меди
Условия проведения
эксперимента
Концентрация тиокетона Михлера, М
5·10-6 1·10-5 5·10-5 1·10-4 5·10-4
Предел обнаружения, мкг Cu на 0,1 г сорбента 0,3 0,1 0,1 0,1 0,2
Таблица 3.
Влияние концентрации этилового спирта на величину предела обнаружения меди
Условия проведения
эксперимента
Концентрация этилового спирта, % об.
30 40 50 60 70
Предел обнаружения, мкг Cu на 0,1 г сорбента 0,4 0,1 0,1 0,1 0,3

Формула изобретения

Способ определения меди, включающий приготовление раствора меди (II), переведение его в комплексное соединение сорбентом и измерение коэффициента диффузного отражения, отличающийся тем, что в качестве сорбента используют силикагель, химически модифицированный меркаптопропильными группами, при этом обрабатывают сорбент с сорбированной медью 1·10-5-1·10-4 М раствором тиокетона Михлера в 40-60%-ном растворе этилового спирта в воде и измеряют коэффициент диффузного отражения поверхностного комплекса меди (I) при 540 нм.


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 10.11.2007

Извещение опубликовано: 27.07.2009 БИ: 21/2009


Categories: BD_2291000-2291999