Патент на изобретение №2291233

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2291233 (13) C1
(51) МПК

C25D11/08 (2006.01)
C25D15/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.12.2010 – прекратил действие

(21), (22) Заявка: 2005131378/02, 10.10.2005

(24) Дата начала отсчета срока действия патента:

10.10.2005

(46) Опубликовано: 10.01.2007

(56) Список документов, цитированных в отчете о
поиске:
RU 2229542 C1, 27.05.2004. RU 2165484 C1, 20.04.2001. RU 2086713 C1, 10.08.1997. RU 2206642 C2, 20.06.2003.

Адрес для переписки:

302019, г.Орел, ул. Ген. Родина, 69, ОрелГАУ

(72) Автор(ы):

Кузнецов Юрий Алексеевич (RU),
Батищев Алексей Никифорович (RU),
Ферябков Александр Витальевич (RU),
Кулаков Константин Викторович (RU),
Тарасов Константин Викторович (RU),
Севостьянов Александр Леонидович (RU)

(73) Патентообладатель(и):

Федеральное государственное образовательное учреждение высшего профессионального образования “Орловский государственный аграрный университет” (ФГОУ ВПО ОрелГАУ) (RU)

(54) ЭЛЕКТРОЛИТ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ

(57) Реферат:

Изобретение относится к электрохимии, а именно к электролитам для формирования на поверхности изделий из алюминия и его сплавов качественных, равномерных, коррозионно-стойких, тепло-износостойких покрытий. Электролит содержит, г/л: борную кислоту 20-30; гидроксид калия 4-6; оксид алюминия 20-25; вода остальное. Технический результат: снижение продолжительности получения покрытия с требуемой толщиной, микротвердостью и износостойкостью примерно в 1,5 раза и, следовательно, снижение расхода энергии. 1 табл.

Изобретение относится к электрохимии, а именно к электролитам для формирования на поверхности изделий из алюминия и его сплавов качественных, равномерных, коррозионно-стойких, тепло-износостойких покрытий.

Известен способ электрохимической обработки изделий из алюминия в электролите [А.с. СССР № 406965, кл. C 25 D 11/08] при следующем соотношении компонентов, г/л:

Соляная кислота 1…10

Борная кислота 1…20

Однако покрытия, сформированные в указанном электролите, низкого качества, имеют невысокую защитную способность, недостаточна износостойкость за счет невысокой микротвердости покрытия.

Наиболее близкими к изобретению являются способы получения покрытий на изделиях из алюминиевых сплавов, заключающиеся в микродуговом оксидировании (МДО) в комбинированном электролите [Патент РФ 2166570, кл. C 25 D 11/08, Патент РФ № 2229542, кл. C 25 D 11/08].

Недостатком данного электролита является длительная продолжительность обработки для получения покрытия с требуемыми свойствами (120…150 мин) и, следовательно, повышенный расход энергии.

Задачей изобретения является сокращение продолжительности получения покрытия с требуемой толщиной, микротвердостью и износостойкостью, а также снижение расхода энергии.

Технический результат при решении указанной задачи при использовании изобретения заключается в снижении продолжительности получения покрытия с требуемой толщиной и повышении микротвердости и износостойкости примерно в 1,5 раза и, следовательно, в снижении расхода энергии.

Суть изобретения заключается во введении в электролит оксида алюминия при следующем содержании компонентов, г/л:

Борная кислота 20…30

Гидроксид калия 4…6

Оксид алюминия 20…25

Вода – Остальное

Электролит готовят простым смешиванием компонентов по заявленному составу.

МДО ведут в анодно-катодном режиме при температуре электролита 25…30°С, анодной плотности тока 15…20 А/дм2 в течение 90 минут. Равномерную концентрацию дисперсных частиц оксида алюминия в прианодном слое во время нанесения покрытия обеспечивают перемешиванием электролита механическим способом. При этом на поверхности изделий из алюминия и его сплавов формируется покрытие из химически стойких модификаций оксида алюминия и соединений алюминия с бором, обладающих высокими механическими свойствами.

Эксперименты по изучению влияния компонентов предлагаемого электролита показали, что при содержании гидроксида калия менее 4 г/л электролит не обеспечивает достаточной рассеивающей способности, что приводит к увеличению энергоемкости процесса. При содержании гидроксида калия более 6 г/л электролит имеет высокую агрессивность, что приводит к травлению поверхности и уменьшению толщины покрытия. При содержании борной кислоты менее 20 г/л электролит не обеспечивает надежной пассивации и тем самым не увеличивает выход -Al2О3 и борида алюминия, которые обладают высокими механическими свойствами, а при превышении 30 г/л повышается неравномерность покрытия.

Процесс получения покрытий в электролите, содержащем оксид алюминия в отличие от обычных электролитов, имеет иной механизм. Благодаря наличию в электролите взвешенных частиц оксида алюминия резко интенсифицируется процесс формообразования покрытия. Покрытие формируется таким образом, что в его составе присутствует введенный в электролит оксид алюминия. Как показали эксперименты, продолжительность получения покрытия с требуемой толщиной и механическими свойствами сокращается примерно в 1,5 раза.

Предложенные диапазоны концентрации оксида алюминия являются рациональными. При содержании оксида алюминия более 25 г/л снижается равномерность покрытия, при содержании оксида алюминия менее 20 г/л повышается продолжительность получения покрытия с заданными свойствами.

Изобретение проиллюстрировано примерами, представленными в таблице.

МДО подвергали образцы из алюминиевого сплава АМг2.

Измерение толщины покрытий производили с помощью вихретокового толщиномера ВТ-201.

Равномерность покрытий оценивали по коэффициенту равномерности, определяемому по формуле:

где Smin и Smax – минимальная и максимальная толщина покрытия.

Микротвердость покрытий измеряли по стандартной методике ГОСТ 9450-86 на металлографическом микроскопе Neophot-21 устройством mhp-100 при нагрузке на индентор (алмазную пирамиду Виккерса) 0,981 Н (0,1 кгс).

Испытания на изнашивание проводили по методике ГОСТ 23.224-86 в течение 200 часов на машине трения ИИ5018. Материал контробразца – сталь 45. Износ определяли весовым методом на весах АДВ-200.

Таблица
Показатели Известные электролиты Предлагаемый электролит
Концентрация компонентов, г/л
борная кислота 20…30; гидроксид калия 4…6 борная кислота 20…30; гидроксид калия 4…6; крахмал 6…12 борная кислота 20…30; гидроксид калия 4…6; оксид алюминия 20…25
Продолжительность получения покрытия, мин 120 120 90
Толщина покрытия, мкм 130 140-170 120-150
Микротвердость по толщине, ГПа 15-17 16-20 17-23
Скорость изнашивания, г/ч 4,2·10-3 2,9·10-3 3,1·10-3
Равномерность покрытия 0,82 0,90-0,95 0,85-0,90

Как следует из представленных в таблице данных, предлагаемый электролит позволяет сократить примерно в 1,5 раза продолжительность получения покрытия, а по толщине, микротвердости и износостойкости полученные показатели сравнимы с показателями, полученными в известных электролитах. Следовательно, предлагаемый электролит позволяет сократить расход энергии на получение покрытия.

Формула изобретения

Электролит для микродугового оксидирования алюминия и его сплавов, содержащий борную кислоту, гидроксид калия и воду, отличающийся тем, что он дополнительно содержит оксид алюминия при следующем соотношении компонентов, г/л:

Борная кислота 20-30
Гидроксид калия 4-6
Оксид алюминия 20-25
Вода Остальное


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 11.10.2007

Извещение опубликовано: 27.06.2009 БИ: 18/2009


Categories: BD_2291000-2291999