Патент на изобретение №2157020

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2157020 (13) C2
(51) МПК 7
H01L35/16, H01L35/34
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 07.06.2011 – прекратил действие

(21), (22) Заявка: 98121600/28, 27.11.1998

(24) Дата начала отсчета срока действия патента:

27.11.1998

(45) Опубликовано: 27.09.2000

(56) Список документов, цитированных в отчете о
поиске:
Гольцман Б.М. и др. Полупроводниковые материалы на основе Bi2Te3 – М.: Наука, 1972, с.56-58. RU 96100312 A1, 20.03.1998. EP 0369340 A1, 23.05.1990. DE 1295044, 14.05.1969. DE 1217628, 26.05.1966.

Адрес для переписки:

109117, Москва, Б. Толмачевский пер. 5, Институт химических проблем микроэлектроники

(71) Заявитель(и):

Институт химических проблем микроэлектроники

(72) Автор(ы):

Освенский В.Б.,
Каратаев В.В.,
Бублик В.Т.,
Сагалова Т.Б.,
Драбкин И.А.,
Компаниец В.В.

(73) Патентообладатель(и):

Московский государственный институт стали и сплавов (технологический университет),
Институт химических проблем микроэлектроники

(54) СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ


(57) Реферат:

Изобретение относится к области термоэлектрического преобразования энергии, в частности к изготовлению термоэлектрических материалов (ТЭМ) n-типа проводимости, используемых в термоэлектрических устройствах (ТЭУ). Сущность изобретения: для получения термоэлектрического материала на основе твердых растворов Bi2(ТеSе)3 электронного типа проводимости путем легирования хлорсодержащим соединением в качестве хлорсодержащего соединения используют Bi11Se12Cl9. Технический результат: улучшение воспроизводимости легирования ТЭМ, достижение воcпроизводимо высокого уровня термоэлектрической эффективности Z и увеличения выхода годного ТЭМ с высоким значением термоэлектрической эффективности (Z3,010-3 К-1). 1 табл.


Изобретение относится к области термоэлектрического преобразования энергии, в частности к изготовлению термоэлектрических материалов (ТЭМ) n-типа, используемых в термоэлектрических устройствах (ТЭУ).

Известно, что основные энергетические характеристики ТЭУ определяются термоэлектрической эффективностью Z ТЭМ, из которых изготовлены термоэлементы ТЭУ. Величина Z = 2/, где – коэффициент Зеебека, – удельная электропроводность, – удельная теплопроводность ТЭМ, зависит от концентрации носителей тока, причем для каждого интервала рабочих температур ТЭУ существует оптимальная концентрация носителей тока, при которой величина Z ТЭМ достигает максимума.

В n-ветвях термоэлементов используются твердые растворы Bi2(TeSe)3, в которых оптимальную концентрацию носителей тока создают легированием галогенами. Обычно вводятся соединения типа BiCl3 или CdCl2 [1].

Основные недостатки легирующих добавок типа BiCl3 и CdCl2 – их низкая термостойкость и сильная гигроскопичность, то есть способность поглощать воду по реакции
BiCl3 + H2O = BiOCl + 2HCl
При этом происходит неконтролируемый уход галогена в газовую фазу, что приводит к неконтролируемому легированию и не позволяет получать воспроизводимые результаты при легировании в промышленных условиях. Кроме того из-за высокой упругости паров HCl создаются условия, при которых возможен взрыв ампул.

При легировании добавками типа CdCl2, помимо хлора вводятся еще и атомы электрически активного металла (кадмия), которые могут изменять уровень легирования, а также снижать подвижность носителей тока, и следовательно электропроводность кристалла. Улучшить воспроизводимость легирования ТЭМ можно, используя в качестве легирующей добавки соединение BiSeCl, способы получения которого описаны в [2]. Однако полученное этим способом соединение оказалось неоднофазным (т.е. в нем присутствуют и другие хлорсодержащие соединения), что также приводит к невозможности достаточно воспроизводимо контролировать содержание легирующей примеси (хлора) в ТЭМ, чтобы получать кристаллы ТЭМ с термоэлектрической эффективностью Z>3.010-3К-1. Воспроизводимость легирования достигается применением в качестве легирующей добавки соединения Bi11Se12Gl9, синтез и кристаллическая структура которого описаны в работе Трифонова В.А., Шевелькова А.В., Дикарева Е.В., Поповкина Б.А. [3] (прототип). Это тройное соединение удается синтезировать однофазным. Оно обладает достаточной термостойкостью, не разлагаясь до температуры плавления, а также хорошей растворимостью в расплаве твердого раствора Bi2(TeSe)3 и не гигроскопично.

Целью изобретения является достижение воспроизводимо высокого уровня термоэлектрической эффективности Z и увеличение выхода ТЭМ n-типа проводимости с высоким значением Z. В результате при легировании ТЭМ соединением Bi11Se12Cl9, точно контролируется количество вводимого хлора, вводятся только атомы висмута и селена, которые входят в состав ТЭМ и не оказывают побочных влияний на уровень легирования хлором и на рассеяние носителей тока. При этом способе легирования исключаются условия, которые могут приводит к взрыву ампул при синтезе лигатуры, что улучшает экологические условия производства.

Устраняется также одна технологическая операция – сушка и обезвоживание лигатуры.

Примеры.

Ниже приводятся примеры легирования тройного твердого раствора Bi2(TeSe)3 хлором путем введения в него по отдельности различных хлорсодержащих соединений. Например, BiCl3 (0.53 г/на 1 кг ТЭМ), CdCl2(0.463 г/1 кг ТЭМ); BISECl (1.63 г/на 1 кг ТЭМ) или Bi11Se12Cl9 (2.0 г/1 кг ТЭМ). В скобках указаны количества лигатуры (навески), обеспечивающие одинаковое содержание донорной примеси – хлора в кристаллах ТЭМ во всех экспериментах.

Процедура получения термоэлектрических кристаллов Bi2(TeSe)3 с заданными термоэлектрическими свойствами состояла в следующем:
– В кварцевую ампулу диаметром порядка 20 мм, защищенную изнутри слоем пиролитического углерода, загружали основные компоненты: висмут, теллур и селен из расчета образования тройного твердого раствора Bi2(TeSe)3 и указанное выше количество (навеску) каждой в отдельности хлорсодержащей лигатуры. При этом лигатуру в виде бинарных соединений BiCl3 и CdCl2 подвергали предварительной вакуумной сушке при температуре порядка 150-180oC для ее обезвоживания.

– После загрузки всех необходимых компонентов, ампулу вакуумировали до остаточного давления в ней на уровне порядка 1.3310-2 – 1.3310-2 Па, а затем напускали в нее и инертный газ (осушенный аргон или азот) до остаточного давления, равного порядка 0,8 атмосферы (0.8105Па) с последующей запайкой.

– Подготовленную кварцевую ампулу с исходными компонентами устанавливали в горизонтальную печь сопротивления и синтезировали тройной твердый раствор Bi2(TeSe)3 при температуре порядка 750oC в течение 2 часов в условиях непрерывного покачивания около горизонтального положения.

– После этого ампулу переводили в вертикальное положение и расплав ТЭМ кристаллизовали.

Так как ТЭМ на основе халькогенидов висмута кристаллизуется в ромбоэдрической (слоистой структуре), то кристаллы ТЭМ электронного типа проводимости проявляют достаточно сильную анизотропию, особенно по величине электропроводности, вдоль и перпендикулярно оси (В гексагональной установке ось С перпендикулярна плоскости слоев базиса (0001). соответственно электропроводность вдоль и перпендикулярно оси С). Поэтому легированные хлором кристаллы должны иметь столбчатоориентированную вдоль оси слитка текстуру, при которой ось С перпендикулярна оси слитка. Это достигается методом вертикальной зонной плавки в условиях плоского фронта кристаллизации и определенной величине осевого градиента температуры. Для этого в качестве нагревателя расплавленной зоны использовали нагреватель сопротивления с соответствующий экранировкой. С помощью этой экранировки подавлялась радиальная составляющая теплового потока. Высота расплавленной зоны практически была равна диаметру слитка. Формирование заданных термоэлектрических и структурных параметров осуществлялось за один проход расплавленной зоны снизу в верх со скоростью 0.1-0.2 мм/мин. После зонной плавки кристаллы ТЭМ извлекали из кварцевой ампулы и проводили измерения термоэлектрических параметров, зависящих от уровня легирования: электропроводности ( Ом-1см-1) и коэффициента термоЭДС ( , мкВ/град) при 300 К. Готовой продукцией считали кристаллы ТЭМ, имеющие электропроводность 950 -1100 Oм-1см-1, коэффициент термоЭДС 220-205 мкВ/град и термоэлектрическую эффективность Z 3.010-3К-1 при 300 К.

Все экспериментальные данные, полученные при использовании различных лигатур, и рассчитанные по ним значения Z (расчет Z проводили с учетом анизотропии ТЭМ), среднеарифметические эначения и ошибка в нахождении Z приведены в таблице.

Литература
1. Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые тэрмоэлектрические материалы на основе Bi2Te3. M.: Наука, 1972. – 320 с.

2. Donges Е. Z.f.anorg, allg.Chemie, 1950, B.263, p.280-291.

3. Трифонов В.А., Шевельков А.В., Дикарев Е.В., Поповкин Б.А. Синтез и кристаллическая структура Bi11Se12Cl9

Формула изобретения


Способ получения термоэлектрических материалов на основе твердых растворов Bi2(TeSe)3 электронного типа проводимости путем легирования их хлорсодержащим соединением, отличающийся тем, что в качестве хлорсодержащего соединения используют Bi11Se12Cl9.

РИСУНКИ

Рисунок 1


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 28.11.2003

Извещение опубликовано: 20.12.2004 БИ: 35/2004


Categories: BD_2157000-2157999