Патент на изобретение №2288170

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2288170 (13) C2
(51) МПК

C01B21/082 (2006.01)
C01B31/00 (2006.01)
C01C3/20 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.12.2010 – действует

(21), (22) Заявка: 2005104194/15, 16.02.2005

(24) Дата начала отсчета срока действия патента:

16.02.2005

(43) Дата публикации заявки: 27.07.2006

(46) Опубликовано: 27.11.2006

(56) Список документов, цитированных в отчете о
поиске:
МИЛЯВСКИЙ В.В. и др., Кристаллический сверхтвердый нитрид углерода – от прогноза к синтезу, 08.10.2002. US 5110679 A, 05.05.1992. US 6428762 В1, 06.08.2002. JP 02-206619 A, 16.08.1990. JP 03-072003 А, 27.03.1991. JP 2001-059156 А, 06.03.2001. JP 2002-038269 А, 06.02.2002. DALE R. MILLER et al., Rapid, facile synthesis of nitrogen-rich carbon nitride powders, J. Mater. Chem., 2002, v.12, № 8, p.p.2463-2469.

Адрес для переписки:

191186, Санкт-Петербург, а/я 230, “АРС-ПАТЕНТ”, В.В.Дощечкиной

(72) Автор(ы):

Блинов Лев Николаевич (RU),
Мохаммад Ареф Хасан (RU),
Филиппов Сергей Николаевич (RU),
ЛАППАЛАЙНЕН Рейо (FI)

(73) Патентообладатель(и):

Карбодеон Лтд Ой (FI)

(54) СПОСОБ ПОЛУЧЕНИЯ НИТРИДА УГЛЕРОДА

(57) Реферат:

Изобретение может быть использовано в электронной и медицинской технике, при изготовлении люминофоров, жестких компьютерных дисков, инструментов с повышенной твердостью. Способ получения нитрида углерода включает термическое разложение роданида щелочного металла в вакуумированной герметизированной камере, выполненной в виде двух сообщающихся сосудов, в которой создают градиент температур Тmax, меньшей или равной 500°С, Tmin, равной комнатной температуре, после чего удаляют сконденсированный CS2. Изобретение позволяет получить нитрид углерода экологически чистым путем и увеличить выход готового продукта.

Изобретение относится к области химии. Нитрид углерода может быть использован в электронной технике, медицинском оборудовании, в производстве голубого люминофора, для напыления жестких дисков для компьютеров, изготовления инструментов с повышенной твердостью, применяемых в металлообрабатывающей промышленности и т.д.

В настоящее время представляют интерес методы получения нитрида углерода путем проведения термического разложения химических веществ или смеси веществ.

Известен способ получения C3N4, включающий загрузку меламина (C3N3)(NH2)3 и циануристого хлорида (C3N3)Cl3, дальнейшее нагревание с образованием готового продукта C3N4.

Недостатком является то, что способ не позволяет избавиться от образования Н2 и HCN. Это приводит к повышенной взрывоопасности и токсичности процесса [Montigaud H., Tanguy В., Demazeau G., Alves I., Courjault S. C3N4: dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4

Известен метод для создания нитрида углерода C3N4 [пат. №6428762 US]. Порошок циануристого хлорида (C3N3)Cl3 смешивают с порошком нитрида лития Li3N, после чего смесь помещают в реактор и герметизируют. Пропускают через реактор азот и нагревают содержимое до температуры 300-400°С и выдерживают определенное время. Для того чтобы убрать побочные продукты реакции полученный нитрид углерода охлаждают и промывают.

Недостатками указанного метода являются: многоступенчатость процесса, высокая стоимость и небольшой выход готового продукта – C3N4.

Известен способ получения нитрида углерода C3N4, выбранный за прототип. [В.В.Милявский и др. Кристаллический сверхтвердый нитрид углерода – от прогноза к синтезу]. Способ основан на термическом разложении роданида металла при определенных параметрах.

Способ не позволяет получать C3N4 стехиометрического состава, кроме того, выход готового продукта был очень мал и содержание в нем азота значительно падало.

Техническим результатом изобретения является получение C3N4 экологически чистым путем, а также увеличение выхода и удешевление готового продукта C3N4.

Для этого предложен способ получения нитрида углерода C3N4, который заключается в том, что при термическом разложении роданида металла используют роданид щелочного металла. Его разложение ведут в вакуумированной и герметизированной камере, выполненной в виде двух сообщающихся сосудов, в которой создают градиент температур Тmax, меньшей или равной 500°С, Tmin, равной комнатной температуре. В результате получают в одном сосуде нитрид углерода C3N4 и сульфиды металла, а в другом – сконденсированный побочный продукт CS2 и легколетучие примеси. Второй сосуд удаляют. Готовый нитрид углерода C3N4 освобождают от сульфидов металла, например, промывают от растворимых в воде сульфидов щелочного металла.

Существенными признаками предлагаемого изобретения являются: использование роданида щелочного металла, камеры определенной формы, ее вакуумирование и герметизация, создание градиента температур.

Использование роданида щелочного металла приводит согласно уравнению реакции 4MeCNS2Me2S+C3N4+CS2 к образованию нитрида углерода C3N4 стехиометрического состава и примесей, не содержащих токсичный HCN, а градиент температуры обеспечивает полное разложение шихты и конденсацию CS2. Сульфиды металла, которые получаются в процессе реакции, хорошо растворимы в воде, что обеспечивает получение чистого C3N4. Как известно, варьированием скорости нагревания шихты можно получить различные структуры нитрида углерода.

Использование камеры предлагаемой конструкции позволяет вести процесс в замкнутом объеме, что является экологически чистым процессом, быстро удалять побочные продукты и удешевляет тем самым получение C3N4.

Вакуумирование и герметизация камеры проводится для того, чтобы полностью исключить из процесса термического разложения исходного продукта кислород и водород, которые в том или ином количестве присутствуют в атмосфере. Наличие кислорода резко снижает выход готового продукта, а водорода – приводит к увеличению взрывоопасности процесса.

Совокупность отличительных признаков позволяет получать нитрид углерода простым, дешевым и экологически чистым способом.

Увеличение температуры нагрева выше 500°С нецелесообразно, так как приводит к частичному разложению C3N4, тем самым уменьшая конечный выход продукта.

Предлагаемый способ обладает новизной, так как идентичные признаки не были выявлены.

Для получения нитрида углерода C3N4 брали роданид калия весом 10,5271 г загружали его в реакционную камеру, выполненную из кварцевого стекла в виде двух сообщающихся сосудов. Камеру вакуумировали до давления 10-4-10-5 мм рт.ст. и герметизировали. Камеру помещали в печь и нагревали до Т=500°С, обеспечивая градиент в сосудах Tmax=500°C, Tmin=комнатная температура. Происходила реакция: 4KCNS2K2S+C3N4+CS2.

Образовавшийся CS2 и легколетучие примеси конденсировались в одном из сосудов из-за создания градиента температур. Этот сосуд удаляли. Сульфид калия K2S хорошо растворяется в воде, и его удаляют путем простого промывания. В результате получают нитрид углерода C3N4 в виде порошка, выход которого составляет 16%.

Для получения нитрида углерода C3N4 брали роданид натрия весом 10,6321 г загружали его в реакционную камеру, выполненную из кварцевого стекла в виде двух сообщающихся сосудов. Камеру вакуумировали до давления 10-4-10-5 мм рт.ст. и герметизировали. Камеру помещали в печь и нагревали до Т=490°С, обеспечивая градиент в сосудах Тmax=490°С, Тmin=комнатная температура. Происходила реакция 4NaCNS2Na2S+C3N4+CS2.

Сосуд с CS2 и примесями удаляли. Сульфид натрия Na2S хорошо растворяется в воде и его удаляют путем простого промывания. В результате получают нитрид углерода C3N4 в виде порошка, выход которого составляет 15%.

При необходимости смесь роданидов натрия и калия тоже может быть использована для получения C3N4.

Использование предложенного способа получения нитрида углерода C3N4 позволяет получить продукт экологически чистым путем, удешевить процесс в 10-20 раз за счет использования достаточно дешевого исходного продукта и увеличить выход готового продукта.

Формула изобретения

Способ получения нитрида углерода, включающий термическое разложение роданида металла, отличающийся тем, что используют роданид щелочного металла и его разложение ведут в вакуумированной и герметизированной камере, выполненной в виде двух сообщающихся сосудов, в которой создают градиент температур Tmax, меньшей или равной 500°С, Tmin, равной комнатной температуре, после чего удаляют сконденсированный CS2.

Categories: BD_2288000-2288999